Peña Ccoa Willmor J, Mukadum Fatemah, Ramon Aubin, Stirnemann Guillaume, Hocky Glen M
Department of Chemistry, New York University, New York, NY 10003.
Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2425982122. doi: 10.1073/pnas.2425982122. Epub 2025 May 21.
Vinculin forms a catch bond with the cytoskeletal polymer actin, displaying an increased bond lifetime upon force application. Notably, this behavior depends on the direction of the applied force, which has significant implications for cellular mechanotransduction. In this work, we present a comprehensive molecular dynamics simulation study, employing enhanced sampling techniques to investigate the thermodynamic, kinetic, and mechanistic aspects of this phenomenon at physiologically relevant forces. We dissect a catch bond mechanism in which force shifts vinculin between either a weakly or strongly bound state. Our results demonstrate that models for these states have unbinding times consistent with those from single-molecule studies, and suggest that both have some intrinsic catch-bonding behavior. We provide atomistic insight into this behavior, and show how a directional pulling force can promote the strong or weak state. Crucially, our strategy can be extended to measure the difficult-to-capture effects of small mechanical forces on biomolecular systems in general, and those involved in mechanotransduction more specifically.
纽蛋白与细胞骨架聚合物肌动蛋白形成一种“捕获键”,在施加力时其键寿命会增加。值得注意的是,这种行为取决于所施加力的方向,这对细胞机械转导具有重要意义。在这项工作中,我们进行了一项全面的分子动力学模拟研究,采用增强采样技术来研究在生理相关力作用下这一现象的热力学、动力学和机制方面。我们剖析了一种捕获键机制,其中力使纽蛋白在弱结合或强结合状态之间转换。我们的结果表明,这些状态的模型具有与单分子研究一致的解离时间,并表明两者都具有一些内在的捕获键行为。我们提供了对这种行为的原子层面的见解,并展示了定向拉力如何促进强或弱状态。至关重要的是,我们的策略可以扩展到一般地测量小机械力对生物分子系统难以捕捉的影响,更具体地说是对参与机械转导的那些影响。