Ding Jijuan, Liu Fei, Huang Jing, Li Ping, Zhang Junmao, Wu Bo, Shu Longfei, He Zhili, Wang Cheng
School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, PR China.
School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, PR China.
Water Res. 2025 Sep 1;283:123851. doi: 10.1016/j.watres.2025.123851. Epub 2025 May 17.
Freshwater-influenced mangrove wetlands are significant sources of methane emissions, potentially offsetting up to 27 % of their carbon storage. The targeted reduction of these emissions offers a critical avenue for enhancing climate resilience. While laboratory studies have shown that elevated sulfate concentrations can suppress methane emissions, the in situ-based effects on methane cycling and associated microbial communities remain poorly understood. To explore this, we introduced magnesium-aluminum layered double hydroxides (Mg-Al-SO-LDH), a slow-release sulfate mineral, into freshwater-influenced mangrove sediments in Guangzhou, China, over a 74-day period, resulting in sulfate levels that were 8.9 times higher than those of the control. Isotope tracing, full-length 16S rDNA sequencing, and metagenomic analysis revealed that this sulfate augmentation significantly altered the methane cycling and functional microbial communities. Notably, we observed substantial stimulation of sulfate reduction coupled with anaerobic oxidation of methane (SR-AOM) within Mg-Al-SO-LDH-attached microbial communities, characterized by a 6.9-fold increase of anaerobic methane-oxidizing archaea (ANME-1b subtype). Contrary to laboratory observations, the elevated sulfate conditions selectively promoted hydrogenotrophic methanogenesis in situ. These findings establish Mg-Al-SO-LDH as a promising approach for enhancing SR-AOM activity while modulating methanogenic pathways, offering novel perspectives for methane management strategies and climate change mitigation within mangrove ecosystems.
受淡水影响的红树林湿地是甲烷排放的重要来源,其甲烷排放量可能抵消高达27%的碳储存量。有针对性地减少这些排放是增强气候适应能力的关键途径。虽然实验室研究表明,硫酸盐浓度升高可抑制甲烷排放,但对甲烷循环及相关微生物群落的原位影响仍知之甚少。为了探究这一问题,我们在中国广州受淡水影响的红树林沉积物中,在74天的时间里引入了一种缓释硫酸盐矿物——镁铝层状双氢氧化物(Mg-Al-SO-LDH),使得硫酸盐水平比对照组高出8.9倍。同位素示踪、全长16S rDNA测序和宏基因组分析表明,这种硫酸盐增加显著改变了甲烷循环和功能性微生物群落。值得注意的是,我们观察到在附着有Mg-Al-SO-LDH的微生物群落中,硫酸盐还原与甲烷厌氧氧化(SR-AOM)显著增强,其特征是厌氧甲烷氧化古菌(ANME-1b亚型)增加了6.9倍。与实验室观察结果相反,硫酸盐浓度升高的条件在原位选择性地促进了氢营养型产甲烷作用。这些发现表明,Mg-Al-SO-LDH是一种增强SR-AOM活性同时调节产甲烷途径的有前景的方法,为红树林生态系统中的甲烷管理策略和气候变化缓解提供了新的视角。
Environ Microbiome. 2025-6-17
Appl Environ Microbiol. 2019-3-22
Mar Pollut Bull. 2025-9
Environ Microbiol. 2021-2