Suppr超能文献

多模态分析揭示了驱动灵长类前额叶皮质神经元电生理成熟的基因。

Multimodal analyses reveal genes driving electrophysiological maturation of neurons in the primate prefrontal cortex.

作者信息

Gao Yu, Dong Qiping, Arachchilage Kalpana Hanthanan, Risgaard Ryan D, Syed Moosa, Sheng Jie, Schmidt Danielle K, Jin Ting, Liu Shuang, Sandoval Soraya O, Knaack Sara, Eckholm Magnus T, Chen Rachel J, Guo Yu, Doherty Dan, Glass Ian, Levine Jon E, Wang Daifeng, Chang Qiang, Zhao Xinyu, Sousa Andre M M

机构信息

Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.

Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.

出版信息

Neuron. 2025 May 14. doi: 10.1016/j.neuron.2025.04.025.

Abstract

The prefrontal cortex (PFC) is critical for myriad high-cognitive functions and is associated with several neuropsychiatric disorders. Here, using Patch-seq and single-nucleus multiomic analyses, we identified genes and regulatory networks governing the maturation of distinct neuronal populations in the PFC of rhesus macaque. We discovered that specific electrophysiological properties exhibited distinct maturational kinetics and identified key genes underlying these properties. We unveiled that RAPGEF4 is important for the maturation of resting membrane potential and inward sodium current in both macaque and human. We demonstrated that knockdown of CHD8, a high-confidence autism risk gene, in human and macaque organotypic slices led to impaired maturation, via downregulation of key genes, including RAPGEF4. Restoring the expression of RAPGEF4 rescued the proper electrophysiological maturation of CHD8-deficient neurons. Our study revealed regulators of neuronal maturation during a critical period of PFC development in primates and implicated such regulators in molecular processes underlying autism.

摘要

前额叶皮层(PFC)对众多高级认知功能至关重要,且与多种神经精神疾病相关。在此,我们运用膜片钳测序和单核多组学分析,鉴定出了恒河猴PFC中不同神经元群体成熟过程的调控基因和调控网络。我们发现特定的电生理特性呈现出不同的成熟动力学,并确定了这些特性背后的关键基因。我们揭示了RAPGEF4对猕猴和人类静息膜电位及内向钠电流的成熟都很重要。我们证明,在人和猕猴的器官型切片中敲低高置信度的自闭症风险基因CHD8,会通过下调包括RAPGEF4在内的关键基因导致成熟受损。恢复RAPGEF4的表达可挽救CHD8缺陷神经元的正常电生理成熟。我们的研究揭示了灵长类动物PFC发育关键期神经元成熟的调节因子,并表明这些调节因子参与了自闭症潜在的分子过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验