West Nicole R, Arachchilage Kalpana Hanthanan, Knaack Sara, MacGregor Shawn, Hosseini Masoumeh, Risgaard Ryan D, Kumarage Pubudu, Martinez Jose L, Zhang Su-Chun, Wang Daifeng, Sousa Andre M M, Bhattacharyya Anita
Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Alzheimers Dement. 2025 Jul;21(7):e70445. doi: 10.1002/alz.70445.
Basal forebrain cholinergic neurons (BFCNs) are integral to learning, attention, and memory, and are prone to degeneration in Down syndrome (DS), Alzheimer's disease, and other neurodegenerative diseases. However, the mechanisms that lead to the degeneration of these neurons are not known.
Single-nucleus gene expression and Assay for Transposase-Accessible Chromatin (ATAC) sequencing were performed on postmortem human basal forebrain from unaffected control and DS tissue samples at 0-2 years of age (n = 4 each).
Sequencing analysis of postmortem human basal forebrain identifies gene expression differences in DS early in life. Genes encoding proteins associated with energy metabolism pathways, specifically oxidative phosphorylation and glycolysis, and genes encoding antioxidant enzymes are upregulated in DS BFCNs.
Multiomic analyses reveal that energy metabolism may be disrupted in DS BFCNs by birth. Increased oxidative phosphorylation and the accumulation of reactive oxygen species byproducts may be early contributors to DS BFCN neurodegeneration.
First multiomic gene expression and ATAC analysis of human basal forebrain. Basal forebrain pathology in DS begins by birth. Cell type proportions are altered in early postnatal DS basal forebrain. Gene expression suggests dysregulated energy metabolism in DS BFCNs. Genes encoding oxidative phosphorylation subunits and glycolysis enzymes are dysregulated in DS BFCNs.
基底前脑胆碱能神经元(BFCNs)对于学习、注意力和记忆至关重要,并且在唐氏综合征(DS)、阿尔茨海默病和其他神经退行性疾病中容易发生退化。然而,导致这些神经元退化的机制尚不清楚。
对0至2岁未受影响的对照和DS组织样本(每组n = 4)的死后人类基底前脑进行单核基因表达和转座酶可及染色质分析(ATAC)测序。
死后人类基底前脑的测序分析确定了生命早期DS中的基因表达差异。在DS BFCNs中,编码与能量代谢途径相关蛋白质的基因,特别是氧化磷酸化和糖酵解相关基因,以及编码抗氧化酶的基因上调。
多组学分析表明,DS BFCNs在出生时能量代谢可能就已受到破坏。氧化磷酸化增加和活性氧副产物的积累可能是DS BFCN神经退行性变的早期因素。
首次对人类基底前脑进行多组学基因表达和ATAC分析。DS中的基底前脑病理在出生时就已开始。产后早期DS基底前脑中细胞类型比例发生改变。基因表达表明DS BFCNs中能量代谢失调。DS BFCNs中编码氧化磷酸化亚基和糖酵解酶的基因失调。