Rahimi Mahdi, Kariminezhad Zahra, Rondon Elsa-Patricia, Fahmi Hassan, Fernandes Julio C, Benderdour Mohamed
Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec H4J 1C5, Canada.
Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec H4J 1C5, Canada; Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada.
Carbohydr Polym. 2025 Jul 15;360:123581. doi: 10.1016/j.carbpol.2025.123581. Epub 2025 Apr 7.
The growing interest in RNA-based therapeutics has positioned small interfering RNA (siRNA) as a promising tool for gene silencing with high specificity and efficacy. However, the successful clinical application of siRNA therapies requires efficient delivery systems to overcome extracellular and intracellular barriers. Chitosan, a naturally derived polysaccharide, has gained significant attention as a non-viral vector due to its biodegradability, biocompatibility, mucoadhesive properties, and capacity to enhance cellular uptake. These attributes make chitosan an attractive alternative to lipid-based nanoparticles, which currently dominate siRNA delivery platforms. Recent advancements in chitosan-based nanoformulations, including chemical modifications and functionalization strategies, have improved siRNA stability, targeting efficiency, and transfection potential, addressing key limitations such as low bioavailability and immunogenicity. Despite these advances, challenges remain in achieving optimal release kinetics, scalability, and consistent therapeutic efficacy. Future research efforts will focus on engineering chitosan derivatives with enhanced physicochemical properties, integrating multifunctional nanocarriers, and refining formulation strategies to bridge the gap between preclinical research and clinical translation. The continued development of chitosan-based siRNA therapeutics holds significant potential for advancing precision medicine and expanding treatment options for a variety of diseases, including cancer, metabolic disorders, and inflammatory conditions.
对基于RNA的疗法日益增长的兴趣使小干扰RNA(siRNA)成为一种具有高特异性和高效性的基因沉默的有前途的工具。然而,siRNA疗法的成功临床应用需要有效的递送系统来克服细胞外和细胞内的障碍。壳聚糖是一种天然衍生的多糖,由于其生物可降解性、生物相容性、粘膜粘附特性以及增强细胞摄取的能力,作为一种非病毒载体受到了广泛关注。这些特性使壳聚糖成为基于脂质的纳米颗粒的有吸引力的替代品,目前基于脂质的纳米颗粒主导着siRNA递送平台。基于壳聚糖的纳米制剂的最新进展,包括化学修饰和功能化策略,提高了siRNA的稳定性、靶向效率和转染潜力,解决了诸如低生物利用度和免疫原性等关键限制。尽管取得了这些进展,但在实现最佳释放动力学、可扩展性和一致的治疗效果方面仍存在挑战。未来的研究工作将集中在设计具有增强物理化学性质的壳聚糖衍生物、整合多功能纳米载体以及完善制剂策略,以弥合临床前研究与临床转化之间的差距。基于壳聚糖的siRNA疗法的持续发展在推进精准医学和扩大包括癌症、代谢紊乱和炎症性疾病在内的多种疾病的治疗选择方面具有巨大潜力。
Carbohydr Polym. 2025-7-15
Mar Drugs. 2019-6-25
Int J Pharm. 2010-8-21
Methods Mol Biol. 2016
Adv Drug Deliv Rev. 2009-9-29
J Biomed Sci. 2025-7-8