Mueller Simon, Sachdeva Bhuvan, Prasad Singri Niharika, Lechtenboehmer Raphael, Holz Frank G, Finger Robert P, Murali Kaushik, Jain Mohit, Wintergerst Maximilian W M, Schultz Thomas
University Hospital Bonn, Department of Ophthalmology, Bonn, Germany.
Microsoft Research, Bengaluru, India.
Sci Rep. 2025 May 21;15(1):16886. doi: 10.1038/s41598-025-00303-z.
Manual Small-Incision Cataract Surgery (SICS) is a prevalent technique in low- and middle-income countries (LMICs) but understudied with respect to computer assisted surgery. This prospective cross-sectional study introduces the first SICS video dataset, evaluates effectiveness of phase recognition through deep learning (DL) using the MS-TCN + + architecture, and compares its results with the well-studied phacoemulsification procedure using the Cataract-101 public dataset. Our novel SICS-105 dataset involved 105 patients recruited at Sankara Eye Hospital in India. Performance is evaluated with frame-wise accuracy, edit distance, F1-score, Precision-Recall AUC, sensitivity, and specificity. The MS-TCN + + architecture performs better on the Cataract-101 dataset, with an accuracy of 89.97% [CI 86.69-93.46%] compared to 85.56% [80.63-92.09%] on the SICS-105 dataset (ROC AUC 99.10% [98.34-99.51%] vs. 98.22% [97.16-99.26%]). The accuracy distribution and confidence-intervals overlap and the ROC AUC values range 46.20 to 94.18%. Even though DL is found to be effective for phase recognition in SICS, the larger number of phases and longer duration makes it more challenging compared to phacoemulsification. To support further developments, we make our dataset open access. This research marks a crucial step towards improving postoperative analysis and training for SICS.
手法小切口白内障手术(SICS)在低收入和中等收入国家(LMICs)是一种普遍使用的技术,但在计算机辅助手术方面的研究较少。这项前瞻性横断面研究引入了首个SICS视频数据集,使用MS-TCN ++架构评估深度学习(DL)进行阶段识别的有效性,并将其结果与使用Cataract-101公共数据集进行的深入研究的超声乳化手术结果进行比较。我们全新的SICS-105数据集纳入了在印度桑卡拉眼科医院招募的105名患者。通过逐帧准确率、编辑距离、F1分数、精确率-召回率曲线下面积、敏感性和特异性来评估性能。MS-TCN ++架构在Cataract-101数据集上表现更好,准确率为89.97%[置信区间86.69-93.46%],而在SICS-105数据集上为85.56%[80.63-92.09%](ROC曲线下面积99.10%[98.34-99.51%]对98.22%[97.16-99.26%])。准确率分布和置信区间有重叠,ROC曲线下面积值范围为46.20%至94.18%。尽管发现DL在SICS的阶段识别中有效,但与超声乳化相比,更多的阶段和更长的持续时间使其更具挑战性。为了支持进一步的发展,我们将数据集开放获取。这项研究标志着朝着改进SICS术后分析和培训迈出了关键一步。