Suppr超能文献

简化胸部放射治疗质量保证:用于自动危及器官轮廓评估的单类分类

Streamlining Thoracic Radiotherapy Quality assurance: One-Class Classification for Automated OAR Contour Assessment.

作者信息

Zhao Yihao, Yuan Cuiyun, Liang Ying, Li Yang, Li Chunxia, Zhao Man, Hu Jun, Zhong Ningze, Liu Wei, Liu Chenbin

机构信息

National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China.

School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, Guangdong, China.

出版信息

Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251345895. doi: 10.1177/15330338251345895. Epub 2025 May 22.

Abstract

PurposeAutomating quality assurance (QA) for contours generated by automatic algorithms is critical in radiotherapy treatment planning. Manual QA is tedious, time-consuming, and prone to subjective experiences. Automatic segmentation reduces physician workload and improves consistency. However, an effective QA process for these automatic contours remains an unmet need in clinical practice.Materials and MethodsThe patient data used in this study was derived from the AAPM Thoracic Auto-Segmentation Challenge dataset, including left and right lungs, heart, esophagus, and spinal cord. Two groups of organ-at-risk (OAR) were generated. A ResNet-152 network was used as a feature extractor, and a one-class support vector machine (OC-SVM) was employed to classify contours as 'high' or 'low' quality. To evaluate the generalizability, we generated low-quality contours using translation and resizing techniques and assessed correlations between detection limits and metrics such as volume, Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and mean surface distance (MSD).ResultsThe proposed OC-SVM model outperformed binary classifiers n metrics such as balanced accuracy and area under the receiver operating characteristic curve (AUC) . It demonstrated superior performance in detecting various types of contour errors while maintaining high interpretability. Strong correlations were observed between detection limits and contour metrics.ConclusionOur proposed model integrates an attention mechanism with a one-class classification framework to automate QA for OAR delineations. This approach effectively detects diverse types of contour errors with high accuracy, significantly reducing the burden on physicians during radiotherapy planning.

摘要

目的

在放射治疗计划中,对自动算法生成的轮廓进行质量保证(QA)自动化至关重要。手动QA繁琐、耗时且容易受到主观经验的影响。自动分割减少了医生的工作量并提高了一致性。然而,针对这些自动轮廓的有效QA流程在临床实践中仍是未满足的需求。

材料与方法

本研究中使用的患者数据来自AAPM胸部自动分割挑战数据集,包括左肺、右肺、心脏、食管和脊髓。生成了两组危及器官(OAR)。使用ResNet-152网络作为特征提取器,并采用一类支持向量机(OC-SVM)将轮廓分类为“高”质量或“低”质量。为了评估泛化能力,我们使用平移和缩放技术生成低质量轮廓,并评估检测限与诸如体积、骰子相似系数(DSC)、95%豪斯多夫距离(HD95)和平均表面距离(MSD)等指标之间的相关性。

结果

所提出的OC-SVM模型在诸如平衡准确率和接收器操作特征曲线下面积(AUC)等指标上优于二元分类器。它在检测各种类型的轮廓误差方面表现出卓越性能,同时保持了高可解释性。在检测限与轮廓指标之间观察到强相关性。

结论

我们提出的模型将注意力机制与一类分类框架相结合,以实现OAR轮廓描绘的QA自动化。这种方法有效地高精度检测各种类型的轮廓误差,显著减轻了放射治疗计划期间医生的负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验