Al Rifai Maher, Jarrar Sultan, Barbarawi Mohammad, Jamous Mohammad, Daoud Suleiman, Jaradat Amer, Ghammaz Owais, Hatem Abulsebaa Bashar, Alsumadi Qutaiba, Ali Shibli Tala, Osamah Alqudah Ahmad
Jordan University of Science and Technology, Ar-Ramtha, Irbid, Jordan*Correspondence: Maher Al Rifai. Email:
Qatar Med J. 2025 Mar 13;2025(1):15. doi: 10.5339/qmj.2025.15. eCollection 2025.
Myelomeningocele (MMC) is a severe congenital malformation of the CNS (central nervous system) that often leads to seizures due to factors such as shunt complications and hydrocephalus. This study aims to develop a machine learning model to predict the likelihood of seizures in MMC patients by analyzing various predictors.
This retrospective study involved 103 MMC patients. Factors such as demographics, MMC location, shunt history, and imaging were analyzed using the random forest classifier, the support vector classifier, and logistic regression. Model performance was assessed through bootstrap estimates, cross-validation, classification reports, and area under the curve (AUC).
Of the evaluated patients, 11 experienced seizures. The key influencing factors included gestational age, sacral location, hydrocephalus, shunt history, and corpus callosum dysgenesis. Machine learning (ML) models predicted seizure risk with an accuracy of 86-92% and an AUC ranging from 0.764 to 0.865. Significant predictors were imaging findings, shunt infection history, and gestational age.
ML models effectively predict seizure risk in MMC patients, with certain variables showing strong associations and significant impact.
脊髓脊膜膨出(MMC)是中枢神经系统(CNS)的一种严重先天性畸形,常因分流并发症和脑积水等因素导致癫痫发作。本研究旨在通过分析各种预测因素,开发一种机器学习模型来预测MMC患者癫痫发作的可能性。
这项回顾性研究纳入了103例MMC患者。使用随机森林分类器、支持向量分类器和逻辑回归分析了人口统计学、MMC位置、分流病史和影像学等因素。通过自助估计、交叉验证、分类报告和曲线下面积(AUC)评估模型性能。
在评估的患者中,11例发生了癫痫发作。关键影响因素包括胎龄、骶部位置、脑积水、分流病史和胼胝体发育不全。机器学习(ML)模型预测癫痫风险的准确率为86-92%,AUC范围为0.764至0.865。重要的预测因素是影像学结果、分流感染史和胎龄。
ML模型能有效预测MMC患者的癫痫风险,某些变量显示出强烈关联和显著影响。