Parihari Shashwati, Pant Anvita, Halder Ankit, Srivastava Sanjeeva
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
J Am Soc Mass Spectrom. 2025 Jun 4;36(6):1227-1240. doi: 10.1021/jasms.4c00445. Epub 2025 May 22.
Triple-negative breast cancer (TNBC) poses a significant challenge due to its aggressive nature and limited treatment options, with cisplatin often used in treatment. However, the mechanism underlying the cisplatin resistance in TNBC is poorly understood. This study aimed to develop a cisplatin-resistant (cisR) TNBC cell line and understand its metabolic alterations. Characterization of cisR and cisplatin-sensitive (cisS) cell lines involved cytotoxicity, wound healing, and morphological studies. This study further employed untargeted and targeted mass spectrometry analyses for a deep metabolome comparison between cisR and cisS TNBC cell lines to elucidate the molecular mechanisms driving cisplatin resistance. Metabolomics profiling of cisR and cisS cell lines resulted in the identification of significantly altered metabolites, such as 8-acetylspermidine, d-pantothenic acid, sphingosine, sphinganine 1-phosphate (S1P), nicotinamide, choline, and certain amino acids. This global and targeted metabolomics study also revealed the downregulation of 8-acetylspermidine and d-pantothenic acid, indicating that their dysregulation is associated with cisplatin resistance in TNBC cells. Furthermore, this study unravels the dysregulation of sphingolipid metabolism, particularly the downregulation of ceramide, sphingosine, and S1P, and glycerophospholipid metabolism (choline, LysoPC) as a potential contributor to cisplatin resistance in TNBC cells. Similarly, upregulation of nicotinamide metabolism key players nicotinate and 1-methylnicotinamide emerges as a contributor to cisplatin resistance. Aminoacyl t-RNA biosynthesis and ABC transporter metabolic pathways involving proline, valine, threonine, glutamic acid, and phenylalanine amino acids are also implicated in developing TNBC-resistant cells. This comprehensive metabolomics study identifies distinct metabolic signatures and key dysregulated pathways associated with cisplatin resistance in TNBC, offering potential candidate marker and therapeutic targets.
三阴性乳腺癌(TNBC)因其侵袭性强和治疗选择有限而构成重大挑战,顺铂常用于其治疗。然而,TNBC中顺铂耐药的潜在机制尚不清楚。本研究旨在建立一种顺铂耐药(cisR)的TNBC细胞系,并了解其代谢改变。对cisR和顺铂敏感(cisS)细胞系的特性分析涉及细胞毒性、伤口愈合和形态学研究。本研究进一步采用非靶向和靶向质谱分析,对cisR和顺S TNBC细胞系进行深度代谢组比较,以阐明驱动顺铂耐药的分子机制。cisR和顺S细胞系的代谢组学分析鉴定出了显著改变的代谢物,如8-乙酰亚精胺、d-泛酸、鞘氨醇、鞘氨醇-1-磷酸(S1P)、烟酰胺、胆碱和某些氨基酸。这项全面的靶向代谢组学研究还揭示了8-乙酰亚精胺和d-泛酸的下调,表明它们的失调与TNBC细胞中的顺铂耐药有关。此外,本研究揭示了鞘脂代谢的失调,特别是神经酰胺、鞘氨醇和S1P的下调,以及甘油磷脂代谢(胆碱、溶血磷脂酰胆碱)是TNBC细胞顺铂耐药的潜在原因。同样,烟酰胺代谢关键参与者烟酸和1-甲基烟酰胺的上调也促成了顺铂耐药。涉及脯氨酸、缬氨酸、苏氨酸、谷氨酸和苯丙氨酸的氨酰t-RNA生物合成和ABC转运蛋白代谢途径也与TNBC耐药细胞的形成有关。这项全面的代谢组学研究确定了与TNBC中顺铂耐药相关的独特代谢特征和关键失调途径,提供了潜在的候选标志物和治疗靶点。