Fletcher Nicholas L, Houston Zachary H, Chandler Peter G, Yan Eddie, Holgate Rob, Wheatcroft Michael, Thurecht Kristofer J
Centre for Advanced Imaging, Australian Institute for Bioengineering & Nanotechnology, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, Brisbane, Queensland 4072, Australia.
Mol Pharm. 2025 Jul 7;22(7):3666-3678. doi: 10.1021/acs.molpharmaceut.4c01193. Epub 2025 May 22.
Prostate cancer remains a prevalent and lethal malignancy across the globe. Despite ongoing advances in therapeutic approaches, these remain ineffective, and new treatments are drastically needed. Prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy is a well-developed approach for prostate cancer treatment; however, current small molecule and antibody carriers for molecular radiotherapy each have drawbacks in their biodistribution and consequent side effects as highlighted in current clinical trials. To address this, we developed an approach to bioengineer the well clinically validated antibody carrier HuJ591 to yield an engineered, full-length antibody construct that achieves the beneficial fast pharmacokinetic profile of small molecule carriers alongside the enhanced tumor targeting and reduced renal toxicity of antibody carriers. We report here a rational design process to produce a novel humanized PSMA-targeting antibody designed for the delivery of radiation with abrogated FcRn recycling that aims to reduce blood circulation time and minimize systemic exposure. We demonstrate that these IgG-based constructs retain the favorable properties of HuJ591, such as inherent protein stability, expression in systems compatible with industrial manufacture, and comparable, highly specific PSMA-binding characteristics. We then radiolabeled constructs with the diagnostic radionuclide Cu as a surrogate for therapeutic radionuclide payloads and undertook a proof-of-concept preclinical imaging study to probe the resulting behaviors. This demonstrated the success of this design strategy to yield the intended and radiopharmaceutical characteristics, with the resulting construct being rapidly cleared from circulation over 3 days. Together, this study demonstrates the rational design of a novel targeting antibody platform for PSMA-expressing tumors with reduced systemic exposure. Such a platform is extremely promising for future radiotherapeutic delivery approaches, whereby effective tumor treatment can be achieved while mitigating potential hematologic toxicity observed with standard antibody delivery approaches.
前列腺癌在全球范围内仍然是一种普遍且致命的恶性肿瘤。尽管治疗方法不断进步,但这些方法仍然无效,因此迫切需要新的治疗方法。前列腺特异性膜抗原(PSMA)靶向放射性核素疗法是一种成熟的前列腺癌治疗方法;然而,目前用于分子放疗的小分子和抗体载体在生物分布以及随之而来的副作用方面都存在缺陷,正如当前临床试验所强调的那样。为了解决这个问题,我们开发了一种方法,对临床验证良好的抗体载体HuJ591进行生物工程改造,以产生一种工程化的全长抗体构建体,该构建体既具有小分子载体有益的快速药代动力学特征,又具有增强的肿瘤靶向性和降低的抗体载体肾毒性。我们在此报告一种合理的设计过程,以生产一种新型人源化PSMA靶向抗体,该抗体设计用于递送具有废除FcRn循环功能的辐射,旨在减少血液循环时间并最小化全身暴露。我们证明,这些基于IgG的构建体保留了HuJ591的有利特性,例如固有的蛋白质稳定性、在与工业制造兼容的系统中的表达以及相当的、高度特异性的PSMA结合特性。然后,我们用诊断性放射性核素铜对构建体进行放射性标记,作为治疗性放射性核素 payloads的替代物,并进行了概念验证的临床前成像研究,以探究由此产生的行为。这证明了这种设计策略在产生预期的和放射性药物特性方面的成功,所得构建体在3天内从循环中迅速清除。总之,这项研究证明了一种用于表达PSMA的肿瘤的新型靶向抗体平台的合理设计,该平台具有降低的全身暴露。这样的平台对于未来的放射治疗递送方法极具前景,通过这种方法可以在减轻标准抗体递送方法所观察到的潜在血液学毒性的同时实现有效的肿瘤治疗。