Islam Md Khalid Bin, Marcus R Kenneth
Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA.
Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA.
J Chromatogr A. 2025 Aug 16;1755:466068. doi: 10.1016/j.chroma.2025.466068. Epub 2025 May 18.
Extracellular vesicles (EVs) are membrane-bound nanoparticles (50-1000 nm) secreted by all cell types and play critical roles in various biological processes. Among these, exosomes, a smaller subset of EVs, have attracted considerable interest due to their potential applications in diagnostics and therapeutics. However, conventional EV isolation methods are often limited by inefficiencies in processing time, recovery, and scalability. Hydrophobic interaction chromatography utilizing capillary-channeled polymer (CCP) fiber stationary phases offers a promising alternative, enabling rapid (<15 min), cost-effective (∼$5 per column) EV isolation with high loading capacities (∼10-10¹² particles) and minimal sample pre-processing. Despite these advantages, achieving high-throughput EV isolation for larger-scale applications using the CCP fiber platform is the present challenge. To this end, further optimization of stationary phase packing and adsorption conditions is necessary to maximize the available binding surface area in the current microbore column format. This study systematically investigates the influence of interstitial fraction (i.e. packing density) in polyester (PET) CCP fiber columns on the dynamic binding capacity (DBC) of EVs isolated from human urine using a high-performance liquid chromatography platform. Microbore columns (0.76 mm i.d. × 300 mm) packed with PET CCP fibers in both an eight-channel (PET-8) and a novel trilobal (PET-Y) configuration were evaluated using breakthrough curves and frontal analysis. The results reveal that lower packing densities correlate with higher mass- and surface area-based EV binding capacities, with a maximum DBCs of 2.86 × 10¹³ EVs g fiber and 1.22 × 10¹⁴ EVs m⁻² fiber achieved in <2 min of sample loading. Under optimum conditions, surface utilization of >50 % is realized. These results establish a framework for optimizing CCP fiber-based platforms to enhance EV capture efficiency, facilitating the development of scalable EV isolation techniques for biomedical research and therapeutic applications.
细胞外囊泡(EVs)是由所有细胞类型分泌的膜结合纳米颗粒(50 - 1000纳米),在各种生物过程中发挥关键作用。其中,外泌体作为EVs的一个较小亚群,因其在诊断和治疗中的潜在应用而引起了相当大的关注。然而,传统的EV分离方法往往受到处理时间、回收率和可扩展性方面效率低下的限制。利用毛细管通道聚合物(CCP)纤维固定相的疏水相互作用色谱法提供了一种有前景的替代方法,能够实现快速(<15分钟)、经济高效(每根柱子约5美元)的EV分离,具有高负载能力(约10 - 10¹²个颗粒)且样品预处理最少。尽管有这些优点,但使用CCP纤维平台实现大规模应用的高通量EV分离是当前的挑战。为此,需要进一步优化固定相填充和吸附条件,以最大化当前微径柱形式中可用的结合表面积。本研究使用高效液相色谱平台系统地研究了聚酯(PET)CCP纤维柱中的间隙分数(即填充密度)对从人尿中分离的EVs动态结合容量(DBC)的影响。使用突破曲线和前沿分析评估了填充有PET CCP纤维的八通道(PET - 8)和新型三叶形(PET - Y)配置的微径柱(内径0.76毫米×300毫米)。结果表明,较低的填充密度与基于质量和表面积的更高EV结合容量相关,在<2分钟的样品加载时间内实现了最大DBC,分别为2.86×10¹³个EVs/克纤维和1.22×10¹⁴个EVs/平方米纤维。在最佳条件下,表面利用率>50%。这些结果建立了一个优化基于CCP纤维的平台以提高EV捕获效率的框架,促进了用于生物医学研究和治疗应用的可扩展EV分离技术的发展。