Ashkavand Zahra, Ryan Kerry C, Laboy Jocelyn T, Patel Ritika, Geller Brian, Norman Kenneth R
Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA.
Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA.
Neurobiol Dis. 2025 Aug;212:106961. doi: 10.1016/j.nbd.2025.106961. Epub 2025 May 20.
Mutations that cause familial Alzheimer's disease (AD) are predominantly found in the presenilin (PSEN) encoding genes PSEN1 and PSEN2. While the association of PSEN mutations with familial AD have been known for over 20 years, the mechanism underlying the impact these mutations have on disease is not fully understood. PSENs are phylogenetically conserved proteins that are found in diverse multicellular organisms ranging from plants to humans. PSENs form the proteolytic core of gamma-secretase that is required for cleaving type I transmembrane proteins, such as Notch receptors and the amyloid precursor protein. Importantly, familial AD-associated PSEN mutations are broadly distributed and do not clearly define a specific PSEN function essential for neuronal fitness. Here, using C. elegans as a model organism to study the in vivo functions of PSENs, we confirm that C. elegans PSEN plays a pivotal role in gamma-secretase proteolytic activity as well as maintaining neuronal and organelle health. Notably, we demonstrate that these two functions can be genetically uncoupled. Our research identifies several conserved familial AD-like missense mutations in the endogenous sel-12 gene, which encodes C. elegans PSEN. These mutations preserve sufficient gamma-secretase proteolytic activity to mediate Notch signaling but abolish PSEN's role in supporting neuronal and organelle health. Furthermore, we provide evidence that these familial AD-like missense mutations disrupt mitochondrial calcium regulation, ultimately leading to neuronal dysfunction. These results indicate that C. elegans PSEN plays at least two independent roles: one that mediates gamma-secretase proteolytic activity and another that mediates organelle and neuronal health.
导致家族性阿尔茨海默病(AD)的突变主要存在于编码早老素(PSEN)的基因PSEN1和PSEN2中。虽然PSEN突变与家族性AD的关联已为人所知超过20年,但这些突变对疾病产生影响的潜在机制尚未完全明确。PSEN是在从植物到人类等多种多细胞生物中发现的系统发育保守蛋白。PSEN形成γ-分泌酶的蛋白水解核心,该核心是切割I型跨膜蛋白(如Notch受体和淀粉样前体蛋白)所必需的。重要的是,与家族性AD相关的PSEN突变广泛分布,并未明确界定对神经元健康至关重要的特定PSEN功能。在这里,我们以秀丽隐杆线虫为模式生物来研究PSEN的体内功能,证实秀丽隐杆线虫PSEN在γ-分泌酶蛋白水解活性以及维持神经元和细胞器健康方面发挥着关键作用。值得注意的是,我们证明这两种功能在遗传上是可以分离的。我们的研究在内源性sel-12基因中鉴定出几个保守的家族性AD样错义突变,该基因编码秀丽隐杆线虫PSEN。这些突变保留了足够的γ-分泌酶蛋白水解活性来介导Notch信号传导,但消除了PSEN在支持神经元和细胞器健康方面的作用。此外,我们提供证据表明这些家族性AD样错义突变破坏线粒体钙调节,最终导致神经元功能障碍。这些结果表明秀丽隐杆线虫PSEN至少发挥两个独立作用:一个介导γ-分泌酶蛋白水解活性,另一个介导细胞器和神经元健康。