Kunselman Lauren F, Seaver Elaine C
Whitney Laboratory for Marine Bioscience, 5 N Ocean Shore Blvd, Saint Augustine, FL, 32080, United States of America.
Dev Biol. 2025 Sep;525:26-43. doi: 10.1016/j.ydbio.2025.05.017. Epub 2025 May 20.
To rescue regeneration, the mechanisms underlying regeneration failure must be identified and overcome. In the annelid Capitella teleta, a transverse cut triggers asymmetric responses across the amputation plane: head fragments regenerate the tail, but tail fragments do not regenerate. We compare regeneration of head fragments (successful regeneration) to that of tail fragments (unsuccessful regeneration) using cell proliferation assays, immunolabeling, and in situ hybridization. Surprisingly, following amputation, a dynamic response of the nervous system occurs in the non-regenerating tail fragments of C. teleta that has not previously been described in annelids. Wnt/β-catenin signaling plays a conserved role in patterning the primary axis of some bilaterians during regeneration, but this role has never been demonstrated in annelids. Wnt/β-catenin pathway components are expressed in the blastema of head fragments but not at the cut site of tail fragments in C. teleta. Experimental activation of Wnt/β-catenin signaling following amputation of tail fragments (24-72 h post amputation) induces expression of stem cell markers, increases cell division at the wound site, and produces differentiated muscle and hindgut. Furthermore, activation of Wnt/β-catenin signaling induces ectopic posterior identity at the amputation site, as it does in other bilaterians. Inhibition of Wnt/β-catenin signaling does not rescue head regeneration. Our results indicate that C. teleta tail fragments have latent regenerative potential that is activated by Wnt/β-catenin signaling. However, the incomplete regenerative response suggests that additional cell signaling pathways are required for this complex process. Comparing tissues with different regenerative abilities elucidates the mechanisms underlying regeneration regulation, thereby enabling the prospect of rescuing or increasing regeneration ability in regeneration-deficient tissues.
为挽救再生过程,必须识别并克服导致再生失败的潜在机制。在多毛纲小头虫(Capitella teleta)中,横向切割会引发截肢平面两侧的不对称反应:头部片段能再生出尾部,而尾部片段则无法再生。我们通过细胞增殖分析、免疫标记和原位杂交技术,比较了头部片段(成功再生)和尾部片段(再生失败)的再生情况。令人惊讶的是,截肢后,小头虫尾部片段(此前在多毛纲动物中未被描述过)出现了一种动态的神经系统反应。Wnt/β-连环蛋白信号通路在某些两侧对称动物再生过程中对原轴模式形成起着保守作用,但这一作用在多毛纲动物中从未得到证实。在小头虫中,Wnt/β-连环蛋白信号通路的组成成分在头部片段的芽基中表达,但不在尾部片段的切割部位表达。在尾部片段截肢后(截肢后24 - 72小时)对Wnt/β-连环蛋白信号通路进行实验性激活,可诱导干细胞标志物的表达,增加伤口部位的细胞分裂,并产生分化的肌肉和后肠。此外,Wnt/β-连环蛋白信号通路的激活会在截肢部位诱导异位的后部特征,就像在其他两侧对称动物中一样。抑制Wnt/β-连环蛋白信号通路并不能挽救头部再生。我们的结果表明,小头虫尾部片段具有潜在的再生能力,可被Wnt/β-连环蛋白信号通路激活。然而,不完全的再生反应表明,这一复杂过程还需要其他细胞信号通路的参与。比较具有不同再生能力的组织,有助于阐明再生调控的潜在机制,从而为挽救或提高再生能力不足的组织的再生能力带来希望。