James Kimra S, Jain Neharika, Witzl Kelly, Cicchetti Nico, Fortune Sarah M, Ioerger Thomas R, Martinot Amanda J, Carey Allison F
Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA.
NPJ Vaccines. 2025 May 22;10(1):103. doi: 10.1038/s41541-025-01150-9.
Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), remains a persistent global health challenge due to the lack of an effective vaccine. The only licensed TB vaccine, Bacille Calmette-Guerin (BCG), is a live attenuated strain of Mycobacterium bovis that protects young children from severe disease but fails to provide protection through adulthood. It is unclear why BCG provides incomplete protection despite inducing a robust Th1 immune response. We set out to interrogate mycobacterial determinants of vaccine escape using a functional genomics approach, TnSeq, to define bacterial genes required for survival in mice vaccinated with BCG, the live attenuated Mtb vaccine strain, ΔLprG, and in mice with Mtb immunity conferred by prior infection. We find that critical virulence genes associated with acute infection and exponential growth are less essential in hosts with adaptive immunity, including genes encoding the Esx-1 and Mce1 systems. Genetic requirements for Mtb growth in vaccinated and previously Mtb-infected hosts mirror the genetic requirements reported for bacteria under in vitro conditions that reflect aspects of the adaptive immune response. Across distinct immunization conditions, differences in genetic requirements between live attenuated vaccines and vaccination routes are observed, suggesting that different immunization strategies impose distinct bacterial stressors. Collectively, these data support the idea that Mtb requires genes that enable stress adaptation and growth arrest upon encountering the restrictive host environment induced by the adaptive immune response. We demonstrate that TnSeq can be used to understand the bacterial genetic requirements for survival in vaccinated hosts across pre-clinical live attenuated vaccines and therefore may be applied to other vaccine modalities. Understanding how Mtb survives vaccine-induced immunity has the potential to inform the development of new vaccines or adjuvant therapies.
结核分枝杆菌(Mtb)是结核病(TB)的病原体,由于缺乏有效的疫苗,它仍然是一个持续存在的全球健康挑战。唯一获得许可的结核病疫苗卡介苗(BCG)是一种减毒活的牛分枝杆菌菌株,可保护幼儿免受严重疾病侵害,但无法在成年期提供保护。目前尚不清楚为什么卡介苗尽管能诱导强大的Th1免疫反应,但提供的保护却不完整。我们着手使用功能基因组学方法TnSeq来探究疫苗逃逸的分枝杆菌决定因素,以确定在用卡介苗、减毒活结核分枝杆菌疫苗株ΔLprG接种的小鼠以及先前感染赋予结核分枝杆菌免疫力的小鼠中生存所需的细菌基因。我们发现,与急性感染和指数生长相关的关键毒力基因在具有适应性免疫的宿主中不太重要,包括编码Esx-1和Mce1系统的基因。结核分枝杆菌在接种疫苗和先前感染结核分枝杆菌的宿主中生长的遗传需求反映了在体外条件下报道的细菌遗传需求,这些条件反映了适应性免疫反应的各个方面。在不同的免疫条件下,观察到减毒活疫苗和接种途径之间遗传需求的差异,这表明不同的免疫策略会施加不同的细菌应激源。总体而言,这些数据支持这样一种观点,即结核分枝杆菌需要一些基因,使其能够在遇到适应性免疫反应诱导的限制性宿主环境时适应压力并停止生长。我们证明,TnSeq可用于了解临床前减毒活疫苗接种宿主中细菌生存的遗传需求,因此可能适用于其他疫苗模式。了解结核分枝杆菌如何在疫苗诱导的免疫中存活,有可能为新疫苗或辅助治疗的开发提供信息。