Suppr超能文献

基于影像组学的腹部内疝诊断机器学习模型:一项回顾性研究

Radiomics-based machine learning model for diagnosing internal abdominal hernias: a retrospective study.

作者信息

Ni Zhong-Kai, Zhou Tian-Han, Kang Shu-Chao, Han Ye-Hong, Jin Hai-Min, Huang Shi-Fei, Huang Hai

机构信息

Department of General Surgery, Hangzhou Hospital of Traditional Chinese Medicine, No. 453 Ti-Yu-Chang Road, Hangzhou, 310007, Zhejiang, People's Republic of China.

Department of Radiography, Hangzhou Hospital of Traditional Chinese Medicine, No. 453 Ti-Yu-Chang Road, Hangzhou, 310007, Zhejiang, People's Republic of China.

出版信息

Sci Rep. 2025 May 22;15(1):17803. doi: 10.1038/s41598-025-02534-6.

Abstract

Intraperitoneal hernia is an acute abdominal disease, with complex imaging features and variable clinical manifestations that challenge surgeons and emergency physicians in early disease assessment and streamlined diagnosis and treatment procedures. We retrospectively included patients with internal abdominal hernia between January 2021 and June 2024. Eight machine learning models were constructed, and the classifier with the best performance was selected based on comparative evaluation. The performance of each model was assessed using the area under the curve (AUC), accuracy, and specificity to determine the optimal radiomics-based predictive algorithm. A total of 107 radiomics features were extracted, revealing distinct features between herniated and normal intestines. A predictive model for internal abdominal hernias was constructed based on a machine learning algorithm incorporating 7 different features. The Random Forest model demonstrated superior performance, achieving an AUC of 1, accuracy of 90%, sensitivity of 80%, and specificity of 100% in validation set. Radiomics analysis of internal abdominal hernias provides substantial data support for early disease diagnosis, but it is still a need for validation with a larger sample size in the future.

摘要

腹内疝是一种急性腹部疾病,具有复杂的影像学特征和多样的临床表现,这给外科医生和急诊医生在疾病早期评估以及简化诊断和治疗流程方面带来了挑战。我们回顾性纳入了2021年1月至2024年6月期间患有腹内疝的患者。构建了八个机器学习模型,并通过比较评估选择了性能最佳的分类器。使用曲线下面积(AUC)、准确率和特异性评估每个模型的性能,以确定基于影像组学的最佳预测算法。总共提取了107个影像组学特征,揭示了疝出肠管与正常肠管之间的不同特征。基于包含7种不同特征的机器学习算法构建了腹内疝的预测模型。随机森林模型表现出卓越的性能,在验证集中AUC为1,准确率为90%,灵敏度为80%,特异性为100%。腹内疝的影像组学分析为疾病早期诊断提供了大量数据支持,但未来仍需要更大样本量的验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验