Suppr超能文献

基于计算机断层扫描的放射组学结合机器学习可区分原发性肠道淋巴瘤和克罗恩病。

Computed tomography-based radiomics combined with machine learning allows differentiation between primary intestinal lymphoma and Crohn's disease.

机构信息

Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China.

Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong Province, China.

出版信息

World J Gastroenterol. 2024 Jul 7;30(25):3155-3165. doi: 10.3748/wjg.v30.i25.3155.

Abstract

BACKGROUND

Due to similar clinical manifestations and imaging signs, differential diagnosis of primary intestinal lymphoma (PIL) and Crohn's disease (CD) is a challenge in clinical practice.

AIM

To investigate the ability of radiomics combined with machine learning methods to differentiate PIL from CD.

METHODS

We collected contrast-enhanced computed tomography (CECT) and clinical data from 120 patients form center 1. A total of 944 features were extracted single-phase images of CECT scans. Using the last absolute shrinkage and selection operator model, the best predictive radiographic features and clinical indications were screened. Data from 54 patients were collected at center 2 as an external validation set to verify the robustness of the model. The area under the receiver operating characteristic curve, accuracy, sensitivity and specificity were used for evaluation.

RESULTS

A total of five machine learning models were built to distinguish PIL from CD. Based on the results from the test group, most models performed well with a large area under the curve (AUC) (> 0.850) and high accuracy (> 0.900). The combined clinical and radiomics model (AUC = 1.000, accuracy = 1.000) was the best model among all models.

CONCLUSION

Based on machine learning, a model combining clinical data with radiologic features was constructed that can effectively differentiate PIL from CD.

摘要

背景

由于原发性肠道淋巴瘤 (PIL) 和克罗恩病 (CD) 的临床表现和影像学征象相似,因此在临床实践中对其进行鉴别诊断具有一定的挑战性。

目的

探讨基于放射组学和机器学习方法对 PIL 和 CD 进行鉴别诊断的能力。

方法

我们收集了来自中心 1 的 120 例患者的增强 CT(CECT)和临床资料,对单期 CECT 扫描图像提取了 944 个特征。使用最小绝对收缩和选择算子模型筛选出最佳的预测影像学特征和临床指标。中心 2 收集了 54 例患者的数据作为外部验证集,以验证模型的稳健性。使用受试者工作特征曲线下面积(AUC)、准确性、敏感度和特异度进行评估。

结果

共建立了 5 种用于区分 PIL 和 CD 的机器学习模型。基于测试组的结果,大多数模型的 AUC(>0.850)和准确性(>0.900)较高,表现良好。在所有模型中,临床和放射组学联合模型(AUC=1.000,准确性=1.000)的表现最佳。

结论

基于机器学习,构建了一种将临床数据与影像学特征相结合的模型,能够有效地区分 PIL 和 CD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7862/11238674/21567dd6946f/WJG-30-3155-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验