Suppr超能文献

用于预测奶牛尿中尿囊素的近红外光谱分析

Near-infrared spectroscopy analysis to predict urinary allantoin in dairy cows.

作者信息

Ribeiro Leonardo A C, Menezes Guilherme L, Bresolin Tiago, Arriola Apelo Sebastian I, Dórea Joao R R

机构信息

Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.

Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801.

出版信息

JDS Commun. 2024 Dec 16;6(2):212-216. doi: 10.3168/jdsc.2024-0641. eCollection 2025 Mar.

Abstract

Accurate quantification of rumen microbial proteins is essential in dairy cow nutrition to estimate the ruminal escape of dietary protein and microbial yield. Current quantification methods rely on indirect measurements using purine derivatives (PD). However, these methods require specialized laboratory equipment and trained personnel, resources which are often not available in farm settings. Near-infrared spectroscopy (NIR) has emerged as a powerful tool for predicting the attributes of biological samples, including meat, corn, soybeans, and liquids. Given that allantoin is the primary component in PD, this study aims to (1) develop a predictive model for allantoin levels in urine using NIR and (2) identify key spectral regions for future applications. A total of 182 urine samples were collected from 182 Holstein cows for colorimetric analysis of allantoin and spectral analysis. The raw spectra were preprocessed using scatter correlation methods and spectral derivatives. The partial least squares regression model achieved an R of 0.55, a concordance correlation coefficient of 0.73, and a root mean squared error of prediction (RMSEP) of 3.63 mmol/L to predict allantoin concentration from the spectra data set without preprocessing. However, the use of the first derivative (FirstDev) as a preprocessing step reduced the RMSEP from 3.63 mmol/L to 3.25 mmol/L and increased the R from 0.55 to 0.62. The FirstDev improves spectral resolution by eliminating the constant baseline, potentially explaining the improved model accuracy. Our method has the potential to evaluate the passage rate of microbial protein represented by the changes in urinary allantoin extraction and the potential to be used for AA dietary balance, thereby improving environmental sustainability and profitability in dairy farms.

摘要

准确量化瘤胃微生物蛋白对于奶牛营养中估计日粮蛋白的瘤胃逃逸量和微生物产量至关重要。目前的量化方法依赖于使用嘌呤衍生物(PD)的间接测量。然而,这些方法需要专门的实验室设备和经过培训的人员,而农场环境中往往没有这些资源。近红外光谱(NIR)已成为预测生物样品属性的强大工具,包括肉类、玉米、大豆和液体。鉴于尿囊素是PD的主要成分,本研究旨在:(1)使用近红外光谱开发尿中尿囊素水平的预测模型;(2)确定未来应用的关键光谱区域。从182头荷斯坦奶牛收集了总共182份尿液样本,用于尿囊素的比色分析和光谱分析。原始光谱使用散射相关方法和光谱导数进行预处理。偏最小二乘回归模型在未进行预处理的情况下,从光谱数据集预测尿囊素浓度时,R为0.55,一致性相关系数为0.73,预测均方根误差(RMSEP)为3.63 mmol/L。然而,使用一阶导数(FirstDev)作为预处理步骤将RMSEP从3.63 mmol/L降低到3.25 mmol/L,并将R从0.55提高到0.62。一阶导数通过消除恒定基线提高了光谱分辨率,这可能解释了模型准确性的提高。我们的方法有潜力通过尿中尿囊素提取物的变化来评估微生物蛋白的通过率,并有潜力用于氨基酸日粮平衡,从而提高奶牛场的环境可持续性和盈利能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca8/12094043/32feb7c4dc1b/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验