Wang Chao, Fan Mingyue, Heo Su Chin, Adams Sheila M, Li Thomas, Liu Yuchen, Li Qing, Loebel Claudia, Burdick Jason A, Lu X Lucas, Birk David E, Alisafaei Farid, Mauck Robert L, Han Lin
School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Adv Sci (Weinh). 2025 Aug;12(32):e14750. doi: 10.1002/advs.202414750. Epub 2025 May 23.
The pericellular matrix (PCM) is the immediate microniche surrounding cells in various tissues, regulating matrix turnover, cell-matrix interactions, and disease. This study elucidates the structure-mechanical properties and mechanobiology of the PCM in fibrocartilage, using the murine meniscus as the model. The fibrocartilage PCM is comprised of thin, randomly oriented collagen fibrils that entrap proteoglycans, contrasting with the densely packed, highly aligned collagen fibers in the bulk extracellular matrix (ECM). Compared to the ECM, the PCM exhibits lower modulus and greater isotropy, but has similar relative viscoelastic properties. In Col5a1 menisci, the reduction of collagen V results in thicker, more heterogeneous collagen fibrils, reduced modulus, loss of isotropy and faster viscoelastic relaxation in the PCM. Such altered PCM leads to impaired matrix-to-cell strain transmission, and in turn, disrupts mechanotransduction of meniscal cells, as illustrated by reduced calcium signaling activities and alters expression of matrix genes. In vitro, Col5a1 cells produce a weakened PCM with inferior properties and reduced protection of cells against tensile stretch. These findings highlight the PCM as a distinctive microstructure in fibrocartilage mechanobiology, underscoring a pivotal role of collagen V in PCM function. Targeting the PCM or its constituents offers potential for improving meniscus regeneration, osteoarthritis intervention and broader fibrocartilage-related therapies.
细胞周围基质(PCM)是各种组织中细胞周围紧邻的微环境,调节着基质周转、细胞与基质的相互作用以及疾病发生。本研究以小鼠半月板为模型,阐明了纤维软骨中PCM的结构力学特性和力学生物学。纤维软骨PCM由包裹蛋白聚糖的细的、随机取向的胶原原纤维组成,这与细胞外基质(ECM)中密集堆积、高度排列的胶原纤维形成对比。与ECM相比,PCM表现出较低的模量和更高的各向同性,但具有相似的相对粘弹性特性。在Col5a1半月板中,胶原V的减少导致PCM中胶原原纤维更粗、更不均匀,模量降低,各向同性丧失以及更快的粘弹性松弛。这种改变的PCM导致基质到细胞的应变传递受损,进而破坏半月板细胞的机械转导,如钙信号活动减少和基质基因表达改变所示。在体外,Col5a1细胞产生性能较差的弱化PCM,对细胞的拉伸保护作用降低。这些发现突出了PCM作为纤维软骨力学生物学中一种独特的微观结构,强调了胶原V在PCM功能中的关键作用。针对PCM或其成分有望改善半月板再生、骨关节炎干预以及更广泛的纤维软骨相关治疗。