Suppr超能文献

病毒介导的细菌群落修饰对土壤有机碳积累的影响

Impact of Virus-Mediated Modifications in Bacterial Communities on the Accumulation of Soil Organic Carbon.

作者信息

Liu Mingfeng, Zhou Guixiang, Zhang Congzhi, Chen Lin, Ma Donghao, Zhang Lijun, Jia Chunhua, Ma Ling, Zhang Jiabao

机构信息

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Adv Sci (Weinh). 2025 Aug;12(30):e06449. doi: 10.1002/advs.202506449. Epub 2025 May 23.

Abstract

Microbial adaptations to resource availability are crucial to predict the responses of ecosystems to carbon (C) changes, yet viral roles in C cycling under varying levels of C remain elusive. Through metagenomic analysis of soils with contrasting C availability, a total of 24,789 viral contigs predominantly represent Microviridae and Siphoviridae. The soils with low C availability (straw removal) harbored 21% lysogenic viruses and enriched auxiliary metabolic genes (AMGs) related to C degradation (p < 0.05). Conversely, the soils with high C availability (straw returning) show 93% lytic viruses, stronger virus-bacteria symbiosis, and numerous host functional genes related to C cycling and viral AMGs linked to C fixation (p < 0.05). Furthermore, these findings show that the addition of viruses boosted microbial metabolic efficiency and recalcitrant C accumulation (p < 0.05), with lytic activity accelerating organic C turnover via nutrient release and necromass formation. Overall, this study demonstrates viruses as key regulators of sustainable sequestration of C through host-driven metabolic optimization.

摘要

微生物对资源可利用性的适应性对于预测生态系统对碳(C)变化的响应至关重要,然而在不同碳水平下病毒在碳循环中的作用仍不清楚。通过对碳可利用性不同的土壤进行宏基因组分析,总共24789个病毒重叠群主要代表微小病毒科和长尾病毒科。碳可利用性低的土壤(去除秸秆)含有21%的溶源性病毒,并富集了与碳降解相关的辅助代谢基因(AMGs)(p<0.05)。相反,碳可利用性高(秸秆还田)的土壤显示93%的裂解性病毒、更强的病毒-细菌共生关系,以及许多与碳循环相关的宿主功能基因和与碳固定相关的病毒AMGs(p<0.05)。此外,这些发现表明添加病毒提高了微生物代谢效率和难降解碳积累(p<0.05),裂解活性通过养分释放和坏死物质形成加速了有机碳周转。总体而言,本研究证明病毒是通过宿主驱动的代谢优化实现碳可持续封存的关键调节因子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验