蛋白质组学技术与人工神经网络的创新:解锁牛奶产地鉴定

Innovations in Proteomic Technologies and Artificial Neural Networks: Unlocking Milk Origin Identification.

作者信息

Karamoutsios Achilleas, Oikonomou Emmanouil D, Voidarou Chrysoula Chrysa, Hatzizisis Lampros, Fotou Konstantina, Nikolaou Konstantina, Gouva Evangelia, Gkiza Evangelia, Giannakeas Nikolaos, Skoufos Ioannis, Tzora Athina

机构信息

Laboratory of Animal Health, Hygiene and Food Quality, School of Agriculture, University of Ioannina, 47100 Arta, Greece.

Human Computer Interaction Laboratory, Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece.

出版信息

BioTech (Basel). 2025 Apr 28;14(2):33. doi: 10.3390/biotech14020033.

Abstract

Milk's biological origin determination, including its adulteration and authenticity, presents serious limitations, highlighting the need for innovative advanced solutions. The utilisation of proteomic technologies combined with personalised algorithms creates great potential for a more comprehensive approach to analysing milk samples effectively. The current study presents an innovative approach utilising proteomics and neural networks to classify and distinguish bovine, ovine and caprine milk samples by employing advanced machine learning techniques; we developed a precise and reliable model capable of distinguishing the unique mass spectral signatures associated with each species. Our dataset includes a diverse range of mass spectra collected from milk samples after MALDI-TOF MS (Matrix-assisted laser desorption/ionization-time of flight mass spectrometry) analysis, which were used to train, validate, and test the neural network model. The results indicate a high level of accuracy in species identification, underscoring the model's potential applications in dairy product authentication, quality assurance, and food safety. The current research offers a significant contribution to agricultural science, providing a cutting-edge method for species-specific classification through mass spectrometry. The dataset comprises 648, 1554, and 2392 spectra, represented by 16,018, 38,394, and 55,055 eight-dimensional vectors from bovine, caprine, and ovine milk, respectively.

摘要

牛奶的生物来源鉴定,包括其掺假和真实性鉴定,存在严重局限性,这凸显了对创新先进解决方案的需求。蛋白质组学技术与个性化算法相结合的应用,为更全面有效地分析牛奶样本创造了巨大潜力。当前研究提出了一种创新方法,利用蛋白质组学和神经网络,通过先进的机器学习技术对牛乳、羊乳和山羊乳样本进行分类和区分;我们开发了一个精确可靠的模型,能够区分与每个物种相关的独特质谱特征。我们的数据集包括在基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)分析后从牛奶样本中收集的各种质谱,这些质谱用于训练、验证和测试神经网络模型。结果表明在物种鉴定方面具有很高的准确性,突出了该模型在乳制品认证、质量保证和食品安全方面的潜在应用。当前的研究为农业科学做出了重大贡献,提供了一种通过质谱进行物种特异性分类的前沿方法。该数据集分别包含648个来自牛乳、1554个来自山羊乳和2392个来自羊乳的光谱,分别由来自牛乳、山羊乳和羊乳的16,018、38,394和55,055个八维向量表示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e18/12101317/7bb96031ec12/biotech-14-00033-g0A1.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索