Suppr超能文献

人工智能(AI)与药物性及特异质性血细胞减少症:AI在预防、预测及患者参与中的作用

Artificial Intelligence (AI) and Drug-Induced and Idiosyncratic Cytopenia: The Role of AI in Prevention, Prediction, and Patient Participation.

作者信息

Andrès Emmanuel, El Hassani Hajjam Amir, Maloisel Frédéric, Alonso-Ortiz Maria Belén, Méndez-Bailón Manuel, Lavigne Thierry, Jannot Xavier, Lorenzo-Villalba Noel

机构信息

Service de Médecine Interne, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.

Centre de Compétence des Cytopénies du Bas-Rhin, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.

出版信息

Hematol Rep. 2025 Apr 29;17(3):24. doi: 10.3390/hematolrep17030024.

Abstract

Drug-induced and idiosyncratic cytopenias, including anemia, neutropenia, and thrombocytopenia, present significant challenges in fields like immunohematology and internal medicine. These conditions are often unpredictable, multifactorial, and can arise from a complex interplay of drug reactions, immune abnormalities, and other poorly understood mechanisms. In many cases, the precise triggers and underlying factors remain unclear, making diagnosis and management difficult. However, advancements in artificial intelligence (AI) are offering new opportunities to address these challenges. With its ability to process vast amounts of clinical, genomic, and pharmacovigilance data, AI can identify patterns and risk factors that may be missed by traditional methods. Machine learning algorithms can refine predictive models, enabling earlier detection and more accurate risk assessments. Additionally, AI's role in enhancing patient engagement-through tailored monitoring and personalized treatment strategies-ensures more effective follow-up and improved clinical outcomes for patients at risk of these potentially life-threatening conditions. Through these innovations, AI is paving the way for a more proactive and personalized approach to managing drug-induced cytopenias.

摘要

药物性血细胞减少症和特异质性血细胞减少症,包括贫血、中性粒细胞减少症和血小板减少症,在免疫血液学和内科等领域构成了重大挑战。这些病症通常不可预测、具有多因素性,并且可能源于药物反应、免疫异常以及其他尚不清楚的机制之间的复杂相互作用。在许多情况下,确切的触发因素和潜在因素仍不明确,这使得诊断和管理变得困难。然而,人工智能(AI)的进步为应对这些挑战提供了新的机遇。凭借其处理大量临床、基因组和药物警戒数据的能力,人工智能可以识别传统方法可能遗漏的模式和风险因素。机器学习算法可以完善预测模型,实现更早的检测和更准确的风险评估。此外,人工智能通过定制监测和个性化治疗策略在增强患者参与度方面的作用,确保对有这些潜在危及生命病症风险的患者进行更有效的随访并改善临床结果。通过这些创新,人工智能正在为管理药物性血细胞减少症开辟一条更积极主动和个性化的途径。

相似文献

2
Artificial intelligence (AI) in restorative dentistry: current trends and future prospects.
BMC Oral Health. 2025 Apr 18;25(1):592. doi: 10.1186/s12903-025-05989-1.
4
Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery.
Cureus. 2023 Aug 30;15(8):e44359. doi: 10.7759/cureus.44359. eCollection 2023 Aug.
5
Transforming Healthcare in Low-Resource Settings With Artificial Intelligence: Recent Developments and Outcomes.
Public Health Nurs. 2025 Mar-Apr;42(2):1017-1030. doi: 10.1111/phn.13500. Epub 2024 Dec 4.
7
Rediscovering histology - the application of artificial intelligence in inflammatory bowel disease histologic assessment.
Therap Adv Gastroenterol. 2025 Mar 17;18:17562848251325525. doi: 10.1177/17562848251325525. eCollection 2025.
8
Role of artificial intelligence, machine learning and deep learning models in corneal disorders - A narrative review.
J Fr Ophtalmol. 2024 Sep;47(7):104242. doi: 10.1016/j.jfo.2024.104242. Epub 2024 Jul 15.
9
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.
Therap Adv Gastroenterol. 2025 Feb 23;18:17562848251321915. doi: 10.1177/17562848251321915. eCollection 2025.
10
Harnessing Artificial Intelligence in Obesity Research and Management: A Comprehensive Review.
Diagnostics (Basel). 2025 Feb 6;15(3):396. doi: 10.3390/diagnostics15030396.

本文引用的文献

2
Optimization of diagnosis and treatment of hematological diseases via artificial intelligence.
Front Med (Lausanne). 2024 Nov 7;11:1487234. doi: 10.3389/fmed.2024.1487234. eCollection 2024.
4
Laboratory tests for investigating anemia: From an expert system to artificial intelligence.
Pract Lab Med. 2024 Feb 10;39:e00357. doi: 10.1016/j.plabm.2024.e00357. eCollection 2024 Mar.
5
Applications of Artificial Intelligence in Thrombocytopenia.
Diagnostics (Basel). 2023 Mar 10;13(6):1060. doi: 10.3390/diagnostics13061060.
6
An overview and a roadmap for artificial intelligence in hematology and oncology.
J Cancer Res Clin Oncol. 2023 Aug;149(10):7997-8006. doi: 10.1007/s00432-023-04667-5. Epub 2023 Mar 15.
7
Artificial Intelligence in Bone Marrow Histological Diagnostics: Potential Applications and Challenges.
Pathobiology. 2024;91(1):8-17. doi: 10.1159/000529701. Epub 2023 Feb 15.
8
Drug-induced thrombotic microangiopathy: An updated review of causative drugs, pathophysiology, and management.
Front Pharmacol. 2023 Jan 9;13:1088031. doi: 10.3389/fphar.2022.1088031. eCollection 2022.
9
A machine-learning model for reducing misdiagnosis in heparin-induced thrombocytopenia: A prospective, multicenter, observational study.
EClinicalMedicine. 2022 Nov 24;55:101745. doi: 10.1016/j.eclinm.2022.101745. eCollection 2023 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验