Andrès Emmanuel, El Hassani Hajjam Amir, Maloisel Frédéric, Alonso-Ortiz Maria Belén, Méndez-Bailón Manuel, Lavigne Thierry, Jannot Xavier, Lorenzo-Villalba Noel
Service de Médecine Interne, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
Centre de Compétence des Cytopénies du Bas-Rhin, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
Hematol Rep. 2025 Apr 29;17(3):24. doi: 10.3390/hematolrep17030024.
Drug-induced and idiosyncratic cytopenias, including anemia, neutropenia, and thrombocytopenia, present significant challenges in fields like immunohematology and internal medicine. These conditions are often unpredictable, multifactorial, and can arise from a complex interplay of drug reactions, immune abnormalities, and other poorly understood mechanisms. In many cases, the precise triggers and underlying factors remain unclear, making diagnosis and management difficult. However, advancements in artificial intelligence (AI) are offering new opportunities to address these challenges. With its ability to process vast amounts of clinical, genomic, and pharmacovigilance data, AI can identify patterns and risk factors that may be missed by traditional methods. Machine learning algorithms can refine predictive models, enabling earlier detection and more accurate risk assessments. Additionally, AI's role in enhancing patient engagement-through tailored monitoring and personalized treatment strategies-ensures more effective follow-up and improved clinical outcomes for patients at risk of these potentially life-threatening conditions. Through these innovations, AI is paving the way for a more proactive and personalized approach to managing drug-induced cytopenias.
药物性血细胞减少症和特异质性血细胞减少症,包括贫血、中性粒细胞减少症和血小板减少症,在免疫血液学和内科等领域构成了重大挑战。这些病症通常不可预测、具有多因素性,并且可能源于药物反应、免疫异常以及其他尚不清楚的机制之间的复杂相互作用。在许多情况下,确切的触发因素和潜在因素仍不明确,这使得诊断和管理变得困难。然而,人工智能(AI)的进步为应对这些挑战提供了新的机遇。凭借其处理大量临床、基因组和药物警戒数据的能力,人工智能可以识别传统方法可能遗漏的模式和风险因素。机器学习算法可以完善预测模型,实现更早的检测和更准确的风险评估。此外,人工智能通过定制监测和个性化治疗策略在增强患者参与度方面的作用,确保对有这些潜在危及生命病症风险的患者进行更有效的随访并改善临床结果。通过这些创新,人工智能正在为管理药物性血细胞减少症开辟一条更积极主动和个性化的途径。