Singh Shruti, Kumar Rajesh, Payra Shuvasree, Singh Sunil K
Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND.
Cureus. 2023 Aug 30;15(8):e44359. doi: 10.7759/cureus.44359. eCollection 2023 Aug.
Artificial intelligence (AI) has transformed pharmacological research through machine learning, deep learning, and natural language processing. These advancements have greatly influenced drug discovery, development, and precision medicine. AI algorithms analyze vast biomedical data identifying potential drug targets, predicting efficacy, and optimizing lead compounds. AI has diverse applications in pharmacological research, including target identification, drug repurposing, virtual screening, de novo drug design, toxicity prediction, and personalized medicine. AI improves patient selection, trial design, and real-time data analysis in clinical trials, leading to enhanced safety and efficacy outcomes. Post-marketing surveillance utilizes AI-based systems to monitor adverse events, detect drug interactions, and support pharmacovigilance efforts. Machine learning models extract patterns from complex datasets, enabling accurate predictions and informed decision-making, thus accelerating drug discovery. Deep learning, specifically convolutional neural networks (CNN), excels in image analysis, aiding biomarker identification and optimizing drug formulation. Natural language processing facilitates the mining and analysis of scientific literature, unlocking valuable insights and information. However, the adoption of AI in pharmacological research raises ethical considerations. Ensuring data privacy and security, addressing algorithm bias and transparency, obtaining informed consent, and maintaining human oversight in decision-making are crucial ethical concerns. The responsible deployment of AI necessitates robust frameworks and regulations. The future of AI in pharmacological research is promising, with integration with emerging technologies like genomics, proteomics, and metabolomics offering the potential for personalized medicine and targeted therapies. Collaboration among academia, industry, and regulatory bodies is essential for the ethical implementation of AI in drug discovery and development. Continuous research and development in AI techniques and comprehensive training programs will empower scientists and healthcare professionals to fully exploit AI's potential, leading to improved patient outcomes and innovative pharmacological interventions.
人工智能(AI)已通过机器学习、深度学习和自然语言处理改变了药理学研究。这些进展对药物发现、开发和精准医学产生了重大影响。人工智能算法分析大量生物医学数据,识别潜在的药物靶点,预测疗效,并优化先导化合物。人工智能在药理学研究中有多种应用,包括靶点识别、药物再利用、虚拟筛选、从头药物设计、毒性预测和个性化医学。人工智能改善了临床试验中的患者选择、试验设计和实时数据分析,从而提高了安全性和疗效。上市后监测利用基于人工智能的系统来监测不良事件、检测药物相互作用并支持药物警戒工作。机器学习模型从复杂的数据集中提取模式,实现准确预测和明智决策,从而加速药物发现。深度学习,特别是卷积神经网络(CNN),在图像分析方面表现出色,有助于生物标志物识别和优化药物制剂。自然语言处理促进了对科学文献的挖掘和分析,从而获得有价值的见解和信息。然而,在药理学研究中采用人工智能引发了伦理考量。确保数据隐私和安全、解决算法偏差和透明度问题、获得知情同意以及在决策过程中保持人为监督是至关重要的伦理问题。负责任地部署人工智能需要强大的框架和法规。人工智能在药理学研究中的未来前景广阔,与基因组学、蛋白质组学和代谢组学等新兴技术的整合为个性化医学和靶向治疗提供了潜力。学术界、产业界和监管机构之间的合作对于在药物发现和开发中合乎伦理地实施人工智能至关重要。对人工智能技术的持续研发和全面的培训计划将使科学家和医疗保健专业人员能够充分发挥人工智能的潜力,从而改善患者预后并实现创新的药理学干预。
J Multidiscip Healthc. 2024-8-15
Cureus. 2023-6-30
Expert Rev Clin Pharmacol. 2024-4
Indian J Otolaryngol Head Neck Surg. 2024-4
Medicine (Baltimore). 2025-8-29
J Clin Med. 2025-8-5
Nanomaterials (Basel). 2025-6-10
Methods Mol Biol. 2025
Expert Opin Drug Saf. 2023
Front Pharmacol. 2023-5-22
Innov Pharm. 2022-12-12
Front Bioinform. 2022-6-27
Pharmaceutics. 2022-9-21
Clin Transl Sci. 2023-1