Han Xiaojie, Yang Ben, Guo Chao, Xu Mengmeng, Sun Deqi, Zhi Chengjun, Li Qi, Liu Shikai
Key Laboratory of Mariculture, Ministry of Education, and College of Fisheries, Ocean University of China), Ocean University of China, Qingdao, 266003, Shandong, China.
Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China.
Mar Biotechnol (NY). 2025 May 23;27(3):88. doi: 10.1007/s10126-025-10465-6.
The Pacific oyster (Crassostrea gigas), a species of significant economic importance in global aquaculture, faces increasing challenges due to climate change and salinity fluctuations in coastal environments. This study aims to explore the breeding potential of low salinity tolerance traits and dissect their genetic basis, thereby improving environmental adaptability and expanding aquaculture zones. A total of 845 oysters from 36 full families were exposed to a low-salinity challenge (10 practical salinity units) for assessing phenotypic variation, estimating genetic parameters, and dissecting the genetic basis of low-salinity tolerance. The variation in survival rates among families (0-27.27%) highlighted substantial phenotypic plasticity of low-salinity tolerance. Heritability estimates for low-salinity tolerance traits ranged from 0.141 to 0.277, indicating low to moderate level genetic control of the trait. The low genetic and phenotypic correlations were observed between low-salinity tolerance and growth traits. Using a high-throughput and cost-effective genotyping approach by low-coverage whole genome sequencing with genotype imputation, we genotyped 297 samples with contrasted performance in low-salinity tolerance and detected 3,830,446 high-quality single nucleotide polymorphisms (SNPs) for genetic analysis. Genome-wide association studies (GWAS) uncovered the polygenic architecture of low-salinity tolerance and identified 16 SNPs associated with eight genes involved in oxidative metabolism, transmembrane transport, and immune defense. This study performed the first estimation of genetic parameters for low-salinity tolerance in C. gigas and identified genetic markers and associated genes for the trait, providing valuable information toward genetic improvement of low-salinity tolerance in the oyster using both traditional and genomic selection breeding strategies.
太平洋牡蛎(Crassostrea gigas)是全球水产养殖中具有重要经济意义的物种,由于气候变化和沿海环境盐度波动,面临着越来越多的挑战。本研究旨在探索低耐盐性性状的育种潜力,并剖析其遗传基础,从而提高环境适应性并扩大养殖区域。对来自36个完整家系的845只牡蛎进行了低盐水挑战(10个实用盐度单位),以评估表型变异、估计遗传参数并剖析低耐盐性的遗传基础。家系间存活率的差异(0-27.27%)突出了低耐盐性的显著表型可塑性。低耐盐性性状的遗传力估计值在0.141至0.277之间,表明该性状的遗传控制水平较低到中等。在低耐盐性和生长性状之间观察到较低的遗传和表型相关性。通过低覆盖度全基因组测序和基因型填充的高通量且经济高效的基因分型方法,我们对297个在低耐盐性方面表现不同的样本进行了基因分型,并检测到3830446个高质量单核苷酸多态性(SNP)用于遗传分析。全基因组关联研究(GWAS)揭示了低耐盐性的多基因结构,并鉴定出16个与参与氧化代谢、跨膜运输和免疫防御的8个基因相关的SNP。本研究首次对太平洋牡蛎的低耐盐性遗传参数进行了估计,并鉴定了该性状的遗传标记和相关基因,为利用传统和基因组选择育种策略对牡蛎低耐盐性进行遗传改良提供了有价值的信息。