Suppr超能文献

基于MXene-TiCT的神经形态计算:物理机制、性能提升及前沿计算

MXene-TiCT-Based Neuromorphic Computing: Physical Mechanisms, Performance Enhancement, and Cutting-Edge Computing.

作者信息

Wang Kaiyang, Ren Shuhui, Jia Yunfang, Yan Xiaobing, Wang Lizhen, Fan Yubo

机构信息

Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, People's Republic of China.

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.

出版信息

Nanomicro Lett. 2025 May 23;17(1):273. doi: 10.1007/s40820-025-01787-0.

Abstract

Neuromorphic devices have shown great potential in simulating the function of biological neurons due to their efficient parallel information processing and low energy consumption. MXene-TiCT, an emerging two-dimensional material, stands out as an ideal candidate for fabricating neuromorphic devices. Its exceptional electrical performance and robust mechanical properties make it an ideal choice for this purpose. This review aims to uncover the advantages and properties of MXene-TiCT in neuromorphic devices and to promote its further development. Firstly, we categorize several core physical mechanisms present in MXene-TiCT neuromorphic devices and summarize in detail the reasons for their formation. Then, this work systematically summarizes and classifies advanced techniques for the three main optimization pathways of MXene-TiCT, such as doping engineering, interface engineering, and structural engineering. Significantly, this work highlights innovative applications of MXene-TiCT neuromorphic devices in cutting-edge computing paradigms, particularly near-sensor computing and in-sensor computing. Finally, this review carefully compiles a table that integrates almost all research results involving MXene-TiCT neuromorphic devices and discusses the challenges, development prospects, and feasibility of MXene-TiCT-based neuromorphic devices in practical applications, aiming to lay a solid theoretical foundation and provide technical support for further exploration and application of MXene-TiCT in the field of neuromorphic devices.

摘要

由于具有高效的并行信息处理能力和低能耗,神经形态器件在模拟生物神经元功能方面展现出了巨大潜力。MXene-TiCT作为一种新兴的二维材料,是制造神经形态器件的理想候选材料。其卓越的电学性能和强大的机械性能使其成为实现这一目的的理想选择。本综述旨在揭示MXene-TiCT在神经形态器件中的优势和特性,并推动其进一步发展。首先,我们对MXene-TiCT神经形态器件中存在的几种核心物理机制进行分类,并详细总结其形成原因。然后,这项工作系统地总结并分类了MXene-TiCT的三种主要优化途径的先进技术,如掺杂工程、界面工程和结构工程。值得注意的是,这项工作突出了MXene-TiCT神经形态器件在前沿计算范式中的创新应用,特别是近传感器计算和传感器内计算。最后,本综述精心编制了一个表格,整合了几乎所有涉及MXene-TiCT神经形态器件的研究成果,并讨论了基于MXene-TiCT的神经形态器件在实际应用中的挑战、发展前景和可行性,旨在为MXene-TiCT在神经形态器件领域的进一步探索和应用奠定坚实的理论基础并提供技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8abe/12102059/d6b5d190dc7a/40820_2025_1787_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验