Chen Cathy W S, Hsieh Leon L, Chu Betty X Y
Department of Statistics, Feng Chia University, Taiwan.
Department of Microbiology, New York University Langone Health, New York, New York, United States of America.
PLoS One. 2025 May 23;20(5):e0323070. doi: 10.1371/journal.pone.0323070. eCollection 2025.
Enteroviruses pose a substantial public health challenge in Taiwan, often leading to increased healthcare visits. This study utilizes Taiwan CDC databases to analyse weekly enterovirus case data from emergency departments (EDs), as well as outpatient and inpatient settings. The objectives are to understand infection patterns through model fitting, forecast future visits for proactive epidemic management, and improve forecast accuracy by incorporating holiday effects. This approach enhances the reliability of predictions, supporting timely and effective surveillance and early detection of significant case surges.
This study divides the time series data into an in-sample period (2016-2023) and an out-of-sample period covering weeks 1 to 27 in 2024. Using an expanding window approach, the analysis applies Bayesian structural time series (BSTS) models, exponential smoothing, and random forest to forecast one-week-ahead cases over the 27 weeks in 2024. The study evaluates forecast accuracy using five key metrics and identifies significant surges in cases by detecting values that exceed the 95% prediction intervals, enhancing anomaly detection.
The results demonstrate that BSTS models, which incorporate trends, seasonal variations, summer, and Lunar New Year holiday effects, achieve superior forecasting accuracy. Specifically, by accounting for the Lunar New Year holiday within the out-of-sample period, the models attain mean absolute percentage error (MAPE) values of 6.509% for non-ED visits and 12.645% for ED visits.
The BSTS model effectively addresses nonlinearity and non-stationarity and adapts well to structural changes. This study highlights the importance of holiday adjustments, particularly for the Lunar New Year, in improving forecast accuracy during periods of unusual healthcare demand. These adjustments enhance the BSTS model performance for predicting irregular healthcare service demand.
肠道病毒给台湾的公共卫生带来了重大挑战,常常导致就医人次增加。本研究利用台湾疾病管制署的数据库,分析来自急诊科、门诊和住院环境的每周肠道病毒病例数据。目标是通过模型拟合了解感染模式,预测未来的就诊人次以进行主动的疫情管理,并通过纳入节假日效应提高预测准确性。这种方法提高了预测的可靠性,支持及时有效的监测以及对重大病例激增的早期发现。
本研究将时间序列数据分为样本内时期(2016 - 2023年)和2024年第1周至第27周的样本外时期。采用扩展窗口方法,分析应用贝叶斯结构时间序列(BSTS)模型、指数平滑法和随机森林来预测2024年27周内提前一周的病例数。该研究使用五个关键指标评估预测准确性,并通过检测超过95%预测区间的值来识别病例的显著激增,从而增强异常检测。
结果表明,纳入趋势、季节变化、夏季和农历新年节假日效应的BSTS模型具有卓越的预测准确性。具体而言,通过考虑样本外时期的农历新年节假日,这些模型对于非急诊科就诊的平均绝对百分比误差(MAPE)值为6.509%,对于急诊科就诊为12.645%。
BSTS模型有效地解决了非线性和非平稳性问题,并能很好地适应结构变化。本研究强调了节假日调整的重要性,特别是对于农历新年,在异常医疗需求期间提高预测准确性方面。这些调整增强了BSTS模型预测不规则医疗服务需求的性能。