Korfmann Kevin, Zauchner Andreas, Huo Bing, Grünke Corinna, Wang Yitong, Tellier Aurélien, Arunkumar Ramesh
Professorship for Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.
Genome Biol Evol. 2025 May 30;17(6). doi: 10.1093/gbe/evaf101.
Plant DNA methylation changes occur hundreds to thousands of times faster than DNA mutations and can be transmitted transgenerationally, making them useful for studying population-scale patterns in clonal or selfing species. However, a state-of-the-art approach to use them for inferring population genetic processes and demographic histories is lacking. To address this, we compare evolutionary signatures extracted from CG methylomes and genomes in Arabidopsis thaliana and Brachypodium distachyon. While methylation variants (single methylation polymorphisms) are less effective than single nucleotide polymorphisms for identifying population differentiation in A. thaliana, they can classify phenotypically divergent B. distachyon subgroups that are otherwise genetically indistinguishable. The site frequency spectra generated using methylation sites from varied genomic locations and evolutionary conservation exhibit an excess of rare alleles. Nucleotide diversity estimates were three orders of magnitude higher for methylation variants than for single nucleotide polymorphisms in both species, driven by the higher epimutation rate. Correlations between single nucleotide polymorphisms and single methylation polymorphisms in nucleotide diversity and allele frequencies at gene exons are weak or absent in A. thaliana, possibly because the two sources of variation reflect evolutionary forces acting at different timescales. Linkage disequilibrium quickly decays within 100 bp for methylation variants in both plant species. Finally, we have developed a novel deep learning-based approach that infers demographic histories using methylation variation data alone. We identified recent population expansions in A. thaliana and B. distachyon using methylation variants that were not identified when using single nucleotide polymorphisms. Our study demonstrates the unique evolutionary insights methylomes provide that single nucleotide polymorphisms alone cannot reveal.
植物DNA甲基化变化的发生速度比DNA突变快数百到数千倍,并且可以跨代传递,这使得它们对于研究克隆或自交物种的群体规模模式很有用。然而,目前缺乏一种将它们用于推断群体遗传过程和种群历史的先进方法。为了解决这个问题,我们比较了从拟南芥和二穗短柄草的CG甲基化组和基因组中提取的进化特征。虽然甲基化变体(单甲基化多态性)在识别拟南芥的群体分化方面不如单核苷酸多态性有效,但它们可以对表型不同的二穗短柄草亚组进行分类,而这些亚组在基因上是无法区分的。使用来自不同基因组位置和进化保守性的甲基化位点生成的位点频率谱显示稀有等位基因过量。由于更高的表观突变率,两种物种中甲基化变体的核苷酸多样性估计值比单核苷酸多态性高三个数量级。在拟南芥中,单核苷酸多态性与单甲基化多态性在核苷酸多样性和基因外显子等位基因频率之间的相关性较弱或不存在,这可能是因为这两种变异来源反映了在不同时间尺度上作用的进化力量。对于这两种植物物种中的甲基化变体,连锁不平衡在100 bp内迅速衰减。最后,我们开发了一种基于深度学习的新方法,该方法仅使用甲基化变异数据来推断种群历史。我们使用甲基化变体识别出了拟南芥和二穗短柄草最近的种群扩张,而使用单核苷酸多态性时并未识别出这些扩张。我们的研究证明了甲基化组提供的独特进化见解,这是单核苷酸多态性单独无法揭示的。