Lin Zhiqun, Feng Kexin
Music College of Capital Normal University, Beijing, China.
PLoS One. 2025 May 23;20(5):e0323304. doi: 10.1371/journal.pone.0323304. eCollection 2025.
To address the challenges of innovation and efficiency in film choreography, this study proposes a dance generation model based on the generative adversarial networks. The model is trained using the AIST++ dance motion dataset, incorporating data from multiple dance styles to ensure that the generated dance sequences accurately mimic various stylistic and technical characteristics. The model integrates a music synchronization mechanism and dance structure constraints. These features ensure that the generated dance aligns seamlessly with the background music in terms of rhythm and emotional expression. Additionally, they help maintain a coherent dance structure. Experimental results demonstrate that the proposed model achieves a peak signal-to-noise ratio of 28.5 dB in dance video generation, representing an improvement of 4.2 dB over traditional methods. The structural similarity index reaches 0.83, surpassing the 0.79 achieved by conventional approaches. In a blind evaluation, 85% of professional dancers found the generated dance sequences highly consistent with the original dance styles, marking a 13% improvement over traditional methods. These findings indicate that the model effectively captures the details and fluidity of complex dance movements, providing an innovative and efficient solution for film dance generation.
为应对电影编舞中创新和效率方面的挑战,本研究提出了一种基于生成对抗网络的舞蹈生成模型。该模型使用AIST++舞蹈动作数据集进行训练,纳入了多种舞蹈风格的数据,以确保生成的舞蹈序列能够准确模仿各种风格和技术特征。该模型集成了音乐同步机制和舞蹈结构约束。这些特性确保生成的舞蹈在节奏和情感表达方面与背景音乐无缝对齐。此外,它们有助于保持连贯的舞蹈结构。实验结果表明,所提出的模型在舞蹈视频生成中实现了28.5 dB的峰值信噪比,比传统方法提高了4.2 dB。结构相似性指数达到0.83,超过了传统方法所达到的0.79。在盲评中,85%的专业舞者发现生成的舞蹈序列与原始舞蹈风格高度一致,比传统方法提高了13%。这些发现表明,该模型有效地捕捉了复杂舞蹈动作的细节和流畅性,为电影舞蹈生成提供了一种创新且高效的解决方案。