IEEE Trans Med Imaging. 2022 Aug;41(8):2092-2104. doi: 10.1109/TMI.2022.3156614. Epub 2022 Aug 1.
Potential radioactive hazards in full-dose positron emission tomography (PET) imaging remain a concern, whereas the quality of low-dose images is never desirable for clinical use. So it is of great interest to translate low-dose PET images into full-dose. Previous studies based on deep learning methods usually directly extract hierarchical features for reconstruction. We notice that the importance of each feature is different and they should be weighted dissimilarly so that tiny information can be captured by the neural network. Furthermore, the synthesis on some regions of interest is important in some applications. Here we propose a novel segmentation guided style-based generative adversarial network (SGSGAN) for PET synthesis. (1) We put forward a style-based generator employing style modulation, which specifically controls the hierarchical features in the translation process, to generate images with more realistic textures. (2) We adopt a task-driven strategy that couples a segmentation task with a generative adversarial network (GAN) framework to improve the translation performance. Extensive experiments show the superiority of our overall framework in PET synthesis, especially on those regions of interest.
全剂量正电子发射断层成像(PET)的潜在放射性危害仍然令人关注,而低剂量图像的质量对于临床应用来说永远不是理想的。因此,将低剂量 PET 图像转换为全剂量是非常有意义的。基于深度学习方法的先前研究通常直接提取用于重建的分层特征。我们注意到每个特征的重要性不同,它们应该被不同地加权,以便神经网络可以捕捉到微小的信息。此外,在某些应用中,对某些感兴趣区域的综合是很重要的。在这里,我们提出了一种用于 PET 合成的新型基于分割引导的样式生成对抗网络(SGSGAN)。(1)我们提出了一种基于样式的生成器,采用样式调制,专门控制翻译过程中的层次特征,以生成具有更真实纹理的图像。(2)我们采用了一种任务驱动的策略,将分割任务与生成对抗网络(GAN)框架相结合,以提高翻译性能。大量实验表明,我们的整体框架在 PET 合成方面具有优越性,特别是在那些感兴趣的区域。