Suppr超能文献

整合微生物群落动态和新兴污染物,以精确量化受畜牧业影响的地下水中的污染源。

Integrating microbial community dynamics and emerging contaminants (ECs) for precisely quantifying the sources in groundwater affected by livestock farming.

作者信息

Liu Kai, Qiu Jinrong, Weng Chih-Huang, Tang Zhongen, Fu Renchuan, Lin Xiaojun, Wang Xiujuan, Liu Na, Zeng Jingwen

机构信息

College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China.

South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, Guangdong 510655, China.

出版信息

J Hazard Mater. 2025 Aug 15;494:138691. doi: 10.1016/j.jhazmat.2025.138691. Epub 2025 May 20.

Abstract

Livestock farming is a major emission source of emerging contaminants (ECs); improper management of ECs could lead to severe groundwater pollution. However, research on accurately controlling the impact of large-scale livestock pollution in groundwater and quantifying sources of ECs pollution from livestock farming to formulating effective control measures is scarce. For the first time, the groundwater near four livestock farms (broiler, dairy, aquaculture, and pig farms) was selected as the research object to characterize the ECs, analyze the impact of ECs on microbial communities, and identify the pollution sources of livestock groundwater by the fast expectation-maximization of microbial source tracking (FEAST). Significant differences in the levels of antibiotics and hormones from four livestock farms led to changes in the groundwater microbial communities. The ECs improved the uniqueness of source biomarkers, providing better help for FEAST distinguishing livestock pollution sources at various groundwater mixing ratios. This study improved the accuracy of FEAST in investigating the pollution sources in groundwater and provided experimental evidence for accurate source tracking of ECs in groundwater in large-scale areas heavily polluted by livestock farming.

摘要

畜牧业是新兴污染物(ECs)的主要排放源;对新兴污染物管理不当可能导致严重的地下水污染。然而,关于精确控制大规模畜牧污染对地下水的影响以及量化畜牧养殖中新兴污染物的污染来源以制定有效控制措施的研究却很匮乏。首次选取四个畜牧场(肉鸡场、奶牛场、水产养殖场和养猪场)附近的地下水作为研究对象,以表征新兴污染物,分析新兴污染物对微生物群落的影响,并通过微生物源追踪的快速期望最大化算法(FEAST)识别畜牧场地下水的污染源。四个畜牧场抗生素和激素水平的显著差异导致了地下水微生物群落的变化。新兴污染物提高了源生物标志物的独特性,为FEAST区分不同地下水混合比例下的畜牧污染源提供了更好的帮助。本研究提高了FEAST调查地下水源污染的准确性,并为在受畜牧养殖严重污染的大面积区域中对地下水中新兴污染物进行精确源追踪提供了实验证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验