Sklar L A, Omann G M, Painter R G
J Cell Biol. 1985 Sep;101(3):1161-6. doi: 10.1083/jcb.101.3.1161.
When exposed to the N-formylated chemoattractant peptides, neutrophils undergo a transient ruffling followed by a polarization that involves a redistribution of F-actin (Fechheimer, M., and S. H. Zigmond, 1983, Cell Motil., 3:349-361). The cells also undergo a biphasic right angle light scatter response whose first phase is maximal 10-15 s after exposure to the stimulus, and whose second phase is longer in duration and maximal only after 1 min or more (Yuli, I., and R. Snyderman, 1984, J. Clin. Invest. 73:1408-1417). We now report that the first phase is accompanied by a transient polymerization of actin (monitored by cytometric analysis of phallacidin staining according to the method of Howard, T. H., and W. H. Meyer, 1984, J. Cell Biol., 98:1265-1271) and the second phase is accompanied by a more sustained polymerization of actin. Based on correlated measurements of ligand binding (Sklar, L. A., D. A. Finney, Z. G. Oades, A. J. Jesaitis, R. G. Painter, and C. G. Cochrane, 1984, J. Biol. Chem., 259:5661-5669) and intracellular Ca++ elevation (under conditions where we use the fluorescent Ca++ chelator Quin 2 to modulate intracellular Ca++ levels), we conclude that this first phase requires less than 100 receptors/cell (out of 50,000) and does not require the release of intracellular stores of Ca++. In contrast, the sustained polymerization requires both the occupancy of thousands of receptors (an estimated 10% of the receptors per minute) and may be somewhat sensitive to the availability of intracellular Ca++. When ligand binding is interrupted, F-actin rapidly depolymerizes with a half-time of no greater than approximately 15 s, and the transient light scatter response decays toward its initial value in parallel. Partial disaggregation of the cells follows the recovery of these responses. Based on these observations, we suggest that transient actin polymerization and transient cell ruffling give rise to transient aggregation as long as degranulation is limited.
当暴露于N-甲酰化趋化肽时,中性粒细胞会经历短暂的边缘波动,随后发生极化,这涉及F-肌动蛋白的重新分布(Fechheimer, M., and S. H. Zigmond, 1983, Cell Motil., 3:349 - 361)。细胞还会经历双相直角光散射反应,其第一阶段在暴露于刺激后10 - 15秒达到最大值,第二阶段持续时间更长,且仅在1分钟或更长时间后达到最大值(Yuli, I., and R. Snyderman, 1984, J. Clin. Invest. 73:1408 - 1417)。我们现在报告,第一阶段伴随着肌动蛋白的短暂聚合(根据Howard, T. H., and W. H. Meyer, 1984, J. Cell Biol., 98:1265 - 1271的方法,通过对鬼笔环肽染色进行细胞分析监测),第二阶段伴随着更持续的肌动蛋白聚合。基于配体结合(Sklar, L. A., D. A. Finney, Z. G. Oades, A. J. Jesaitis, R. G. Painter, and C. G. Cochrane, 1984, J. Biol. Chem., 259:5661 - 5669)和细胞内Ca++升高(在我们使用荧光Ca++螯合剂喹啉2调节细胞内Ca++水平的条件下)的相关测量,我们得出结论,第一阶段每个细胞需要少于100个受体(总共50,000个受体中),并且不需要释放细胞内的Ca++储存。相比之下,持续聚合既需要数千个受体被占据(估计每分钟10%的受体),并且可能对细胞内Ca++的可用性有些敏感。当配体结合被中断时,F-肌动蛋白迅速解聚,半衰期不超过约15秒,同时短暂的光散射反应平行衰减至其初始值。细胞的部分解聚在这些反应恢复后发生。基于这些观察结果,我们认为只要脱颗粒受到限制,短暂的肌动蛋白聚合和短暂的细胞边缘波动会导致短暂的聚集。