Suppr超能文献

基于预处理磁共振成像和全切片图像的深度学习影像组学预测局部晚期鼻咽癌总生存期

Deep learning Radiopathomics based on pretreatment MRI and whole slide images for predicting overall survival in locally advanced nasopharyngeal carcinoma.

作者信息

Yi Xiaochun, Yu Xiaoping, Li Congrui, Li Junjian, Cao Hui, Lu Qiang, Li Junjun, Hou Jing

机构信息

Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 Hunan, PR China.

Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, PR China.

出版信息

Radiother Oncol. 2025 Aug;209:110949. doi: 10.1016/j.radonc.2025.110949. Epub 2025 May 21.

Abstract

PURPOSE

To develop an integrative radiopathomic model based on deep learning to predict overall survival (OS) in locally advanced nasopharyngeal carcinoma (LANPC) patients.

MATERIALS AND METHODS

A cohort of 343 LANPC patients with pretreatment MRI and whole slide image (WSI) were randomly divided into training (n = 202), validation (n = 91), and external test (n = 50) sets. For WSIs, a self-attention mechanism was employed to assess the significance of different patches for the prognostic task, aggregating them into a WSI-level representation. For MRI, a multilayer perceptron was used to encode the extracted radiomic features, resulting in an MRI-level representation. These were combined in a multimodal fusion model to produce prognostic predictions. Model performances were evaluated using the concordance index (C-index), and Kaplan-Meier curves were employed for risk stratification. To enhance model interpretability, attention-based and Integrated Gradients techniques were applied to explain how WSIs and MRI features contribute to prognosis predictions.

RESULTS

The radiopathomics model achieved high predictive accuracy in predicting the OS, with a C-index of 0.755 (95 % CI: 0.673-0.838) and 0.744 (95 % CI: 0.623-0.808) in the training and validation sets, respectively, outperforming single-modality models (radiomic signature: 0.636, 95 % CI: 0.584-0.688; deep pathomic signature: 0.736, 95 % CI: 0.684-0.810). In the external test, similar findings were observed for the predictive performance of the radiopathomics, radiomic signature, and deep pathomic signature, with their C-indices being 0.735, 0.626, and 0.660 respectively. The radiopathomics model effectively stratified patients into high- and low-risk groups (P < 0.001). Additionally, attention heatmaps revealed that high-attention regions corresponded with tumor areas in both risk groups.

CONCLUSION

The radiopathomics model holds promise for predicting clinical outcomes in LANPC patients, offering a potential tool for improving clinical decision-making.

摘要

目的

基于深度学习开发一种综合放射组学模型,以预测局部晚期鼻咽癌(LANPC)患者的总生存期(OS)。

材料与方法

将343例接受过预处理MRI和全切片图像(WSI)检查的LANPC患者随机分为训练集(n = 202)、验证集(n = 91)和外部测试集(n = 50)。对于WSI,采用自注意力机制评估不同图像块对预后任务的重要性,并将它们聚合为WSI水平的表示。对于MRI,使用多层感知器对提取的放射组学特征进行编码,得到MRI水平的表示。将这些表示在多模态融合模型中进行组合,以产生预后预测结果。使用一致性指数(C指数)评估模型性能,并采用Kaplan-Meier曲线进行风险分层。为了提高模型的可解释性,应用基于注意力的技术和集成梯度技术来解释WSI和MRI特征如何对预后预测产生影响。

结果

放射组学模型在预测OS方面具有较高的预测准确性,训练集和验证集的C指数分别为0.755(95%CI:0.673 - 0.838)和0.744(95%CI:0.623 - 0.808),优于单模态模型(放射组学特征:0.636,95%CI:0.584 - 0.688;深度病理组学特征:0.736,95%CI:0.684 - 0.810)。在外部测试中,放射组学、放射组学特征和深度病理组学特征的预测性能也有类似发现,它们的C指数分别为0.735、0.626和0.660。放射组学模型有效地将患者分为高风险和低风险组(P < 0.001)。此外,注意力热图显示,在两个风险组中,高注意力区域都与肿瘤区域相对应。

结论

放射组学模型有望预测LANPC患者的临床结局,为改善临床决策提供了一种潜在工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验