Xia Yongling, Liu Yanbin, Sun Weichao
School of Harbin Institute of Technology, Harbin 150000, China.
State Key Laboratory of Robotics and Systems (HIT), Harbin 150000, China.
ISA Trans. 2025 Aug;163:1-8. doi: 10.1016/j.isatra.2025.04.021. Epub 2025 Apr 30.
This article investigates the prescribed-time tracking control of uncertain manipulator systems with external disturbances. Combining with command filtering and neural network techniques, a novel prescribed-time adaptive event-triggered control scheme is proposed, where neural networks are utilized to handle manipulators model uncertainties. Based on a piecewise function, a sufficient condition for prescribed-time stability is provided, which decouples the convergence domain and the settling time into separately preset parameters. The proposed approach not only avoid the "explosion of complexity" problem, but also deal with filter errors by using an error compensation strategy. In addition, an adaptive estimation strategy is developed to compensate for external disturbances, and an event trigger mechanism is introduced to save system communication resources. Finally, the superiority of our proposed prescribed-time control approach is demonstrated via simulation results.
本文研究了具有外部干扰的不确定机械手系统的预设时间跟踪控制。结合指令滤波和神经网络技术,提出了一种新颖的预设时间自适应事件触发控制方案,其中利用神经网络来处理机械手的模型不确定性。基于一个分段函数,给出了预设时间稳定性的充分条件,该条件将收敛域和调节时间解耦为分别预设的参数。所提出的方法不仅避免了“维度灾难”问题,还通过使用误差补偿策略来处理滤波误差。此外,还开发了一种自适应估计策略来补偿外部干扰,并引入了一种事件触发机制来节省系统通信资源。最后,通过仿真结果证明了所提出的预设时间控制方法的优越性。