Peralta Abadia Jose Joaquin, Cuesta Zabaljauregui Mikel, Larrinaga Barrenechea Felix
Mondragon Goi Eskola Politeknikoa, Faculty of Engineering, Arrasate, 20500, Spain.
Sci Data. 2025 May 23;12(1):855. doi: 10.1038/s41597-025-05168-5.
This article presents a dataset of face-milling experiments for smart tool condition monitoring (TCM) performed under varying cutting conditions in the High-Perfomance Machining laboratory of Mondragon Unibertsitatea (MU). The experiments collected raw internal signals from the machine. Cutting forces, vibration signals, and acoustic emission signals were collected with external sensors. Tool wear was measured before each experiment and annotated accordingly, providing tool wear progression throughout the dataset. The dataset was technically validated using Python scripts to ensure the quality and reproducibility of the dataset. The resulting MU-TCM face-milling dataset offers a reproducible research design of experiments and associated data to carry out and advance smart TCM of milling processes. The dataset supports applications such as training machine learning and deep learning for TCM, enables sensor fusion research with diverse signal combinations, and facilitates the development of TCM solutions using only internal CNC signals for industrial environments. By supporting these applications, the dataset is expected to help reduce the gap between research and industry in smart TCM applications.
本文展示了在蒙德拉贡大学(MU)高性能加工实验室中,于不同切削条件下进行的用于智能刀具状态监测(TCM)的端面铣削实验数据集。实验收集了机床的原始内部信号。切削力、振动信号和声发射信号通过外部传感器进行采集。在每次实验前测量刀具磨损情况并进行相应标注,从而在整个数据集中提供刀具磨损的进展情况。该数据集使用Python脚本进行了技术验证,以确保数据集的质量和可重复性。所得的MU-TCM端面铣削数据集提供了可重复的实验研究设计及相关数据,以开展和推进铣削过程的智能TCM。该数据集支持诸如为TCM训练机器学习和深度学习等应用,能够进行不同信号组合的传感器融合研究,并有助于在工业环境中仅使用内部CNC信号开发TCM解决方案。通过支持这些应用,预计该数据集将有助于缩小智能TCM应用中研究与工业之间的差距。