Suppr超能文献

机器学习算法在埃塞俄比亚育龄妇女流产预测中的应用。

Application of machine learning algorithm for prediction of abortion among reproductive age women in Ethiopia.

作者信息

Asnake Angwach Abrham, Gebrehana Alemayehu Kasu, Asebe Hiwot Altaye, Seifu Beminate Lemma, Fente Bezawit Melak, Bezie Meklit Melaku, Melkam Mamaru, Tsega Sintayehu Simie, Negussie Yohannes Mekuria, Asmare Zufan Alamrie

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, College of Health Sciences and Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia.

Department of Midwifery, College of Health Science, Salale University, Fitche, Ethiopia.

出版信息

Sci Rep. 2025 May 23;15(1):17924. doi: 10.1038/s41598-025-95342-x.

Abstract

Abortion is a critical health issue that leads to numerous complications, maternal deaths, and significant financial burdens on women, families, and healthcare systems. Studies have identified factors associated with abortion using traditional statistical analysis methods; however, no previous research has utilized machine learning to predict abortion in Ethiopia or identify its predictive factors. Machine learning is more effective and offers a better solution as it can capture complex and non-linear relationships in the data, leading to improved prediction accuracy compared to traditional regression models. Therefore, this study employed machine learning algorithms to predict abortion in Ethiopia and identify its predictors using nationally representative data. This study used the recent 2016 Ethiopian Demographic and Health Survey and included a sample of 14,931 women of reproductive age (15-49 years). This study used 7 machine learning algorithms for the classification of abortion. The dataset was randomly split into training and testing sets, with 80% allocated for training and 20% for testing. To evaluate the performance of each predictive model, we used a range of metrics such as accuracy, precision, recall, F1-score, and area under the curve (AUC). In this study, SHapley Additive Explanations (SHAP) values were used to measure the influence of each feature on the model's predictions. In the current study, 7 machine learning algorithm (i.e. logistic regression, decision tree classifier, random forest classifier, support vector machine, K neighbor classifier, XGBoost, and Nave bayes) were applied. The random forest classifier model were the best predictive models with the accuracy of 0.91 and AUC of 0.97. Moreover, the XGBoost was the 2nd best-performing algorithm with 0.87 accuracy and 0.94 AUC. According to the SHAP beeswarm and bar plots, younger age was identified as the strongest predictor of abortion, with a mean SHAP value of + 0.060. The second most impactful factor was having a younger husband, contributing a mean SHAP value of + 0.050 to abortion prediction in Ethiopia. Additionally, giving birth for the first time before the age of 18 ranked third, with a mean SHAP value of + 0.052. This study underscores the value of integrating machine learning into public health research and practice. Future work should focus on refining these models with larger and more diverse datasets, as well as exploring their applicability in other contexts and regions to further global maternal health initiatives. By harnessing machine learning techniques, healthcare providers can better classify abortion risks in reproductive-age women in Ethiopia. This knowledge can inform targeted interventions, enhance reproductive health services, and ultimately improve maternal health outcomes.

摘要

堕胎是一个关键的健康问题,会引发众多并发症、孕产妇死亡,并给妇女、家庭和医疗保健系统带来巨大经济负担。研究已使用传统统计分析方法确定了与堕胎相关的因素;然而,此前尚无研究利用机器学习来预测埃塞俄比亚的堕胎情况或识别其预测因素。机器学习更有效且提供了更好的解决方案,因为它可以捕捉数据中的复杂非线性关系,与传统回归模型相比能提高预测准确性。因此,本研究采用机器学习算法来预测埃塞俄比亚的堕胎情况,并使用具有全国代表性的数据识别其预测因素。本研究使用了最新的2016年埃塞俄比亚人口与健康调查,样本包括14931名育龄妇女(15 - 49岁)。本研究使用7种机器学习算法对堕胎进行分类。数据集被随机分为训练集和测试集,80%用于训练,20%用于测试。为评估每个预测模型的性能,我们使用了一系列指标,如准确率、精确率、召回率、F1分数和曲线下面积(AUC)。在本研究中,使用SHapley值加性解释(SHAP)来衡量每个特征对模型预测的影响。在当前研究中,应用了7种机器学习算法(即逻辑回归、决策树分类器、随机森林分类器、支持向量机、K近邻分类器、XGBoost和朴素贝叶斯)。随机森林分类器模型是最佳预测模型,准确率为0.91,AUC为0.97。此外,XGBoost是第二好的算法,准确率为0.87,AUC为0.94。根据SHAP蜂群图和柱状图,年龄较小被确定为堕胎的最强预测因素,平均SHAP值为 + 0.060。第二个最具影响力的因素是丈夫年龄较小,对埃塞俄比亚堕胎预测的平均SHAP值贡献为 + 0.050。此外,18岁前首次生育排名第三,平均SHAP值为 + 0.052。本研究强调了将机器学习整合到公共卫生研究和实践中的价值。未来的工作应侧重于使用更大、更多样化的数据集来优化这些模型,以及探索它们在其他背景和地区的适用性,以进一步推动全球孕产妇健康倡议。通过利用机器学习技术,医疗保健提供者可以更好地对埃塞俄比亚育龄妇女的堕胎风险进行分类。这些知识可为有针对性的干预措施提供信息,加强生殖健康服务,并最终改善孕产妇健康结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/208d/12102202/e61484d90324/41598_2025_95342_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验