Suppr超能文献

用于青少年身体康复的物联网实时健康监测系统。

IoT-enabled real-time health monitoring system for adolescent physical rehabilitation.

作者信息

Yang Jie, Hu Juanjuan, Chen Wenrui

机构信息

Chengdu College of University of Electronic Science and Technology of China, Chengdu, 611731, China.

School of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, 81310, Malaysia.

出版信息

Sci Rep. 2025 May 23;15(1):17994. doi: 10.1038/s41598-025-99838-4.

Abstract

This study aims to develop an intelligent system leveraging Internet of Thing (IoT) technology to enhance the precision of youth physical training monitoring and improve training outcomes. A wearable device incorporating Micro Electro Mechanical Systems (MEMS) sensors is integrated to collect real-time motion data. Advanced signal processing and filtering techniques are employed to minimize noise interference and improve data accuracy. A particle swarm optimization support vector machine (PSO-SVM) algorithm is utilized to classify motion patterns. To evaluate the system's performance, experiments were conducted to assess motion pattern recognition accuracy, response time, real-time analysis capabilities, and system stability and capacity. The methods we use and the data we collect are from public datasets, do not involve privacy protection for adolescents, and have been approved by the institutional ethics committee. The system demonstrated a motion pattern recognition accuracy exceeding 95% and a response time consistently below 250 ms under various network conditions. Practical applications revealed the system's effectiveness in health monitoring, leading to improved physical fitness and positive rehabilitation outcomes for adolescent patients. This study offers an innovative digital solution for adolescent physical training and health monitoring. The system's strong application potential and valuable insights contribute to the advancement of related research.

摘要

本研究旨在开发一种利用物联网(IoT)技术的智能系统,以提高青少年体育训练监测的精度并改善训练效果。集成了包含微机电系统(MEMS)传感器的可穿戴设备,用于收集实时运动数据。采用先进的信号处理和滤波技术,以最小化噪声干扰并提高数据准确性。利用粒子群优化支持向量机(PSO - SVM)算法对运动模式进行分类。为评估系统性能,进行了实验以评估运动模式识别准确率、响应时间、实时分析能力以及系统稳定性和容量。我们使用的方法和收集的数据来自公共数据集,不涉及对青少年的隐私保护,且已获得机构伦理委员会的批准。该系统在各种网络条件下均表现出超过95%的运动模式识别准确率,响应时间始终低于250毫秒。实际应用表明该系统在健康监测方面有效,可为青少年患者带来身体素质的提升和积极的康复效果。本研究为青少年体育训练和健康监测提供了一种创新的数字解决方案。该系统强大的应用潜力和有价值的见解有助于推动相关研究的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8535/12102295/9de8e5311ba4/41598_2025_99838_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验