Suppr超能文献

联合DCE-MRI灌注参数和临床特征列线图对结直肠癌微卫星不稳定性的预测价值

Predictive value of combined DCE-MRI perfusion parameters and clinical features nomogram for microsatellite instability in colorectal cancer.

作者信息

Peng Leping, Ma Wenting, Zhang Xiuling, Zhang Fan, Ma Fang, Ai Kai, Ma Xiaomei, Jia Yingmei, Ou-Yang Hong, Pei Shengting, Wang Tao, Zhu Yuanhui, Wang Lili

机构信息

Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.

Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, China.

出版信息

Discov Oncol. 2025 May 23;16(1):892. doi: 10.1007/s12672-025-02705-x.

Abstract

OBJECTIVES

To develop a nomogram that combines dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion parameters, ADC values and clinical features to preoperatively identify microsatellite instability (MSI) in patients with colorectal cancer (CRC).

METHODS

This retrospective study included 63 CRC patients who underwent preoperative DCE-MRI and had immunohistochemistry results available. Two radiologists, in a double-blind manner, placed two circular regions of interests in the area with the highest perfusion intensity on the DCE-MRI perfusion map and the corresponding area on the ADC map. Perfusion parameters and ADC values were measured, and the average values from both radiologists were used for subsequent analysis. Univariate analysis was performed to identify independent risk factors for MSI. A nomogram was then constructed by combining the most significant clinical risk factors with DCE-MRI perfusion parameters. The model's performance was evaluated using receiver operating characteristic (ROC) curves. Calibration curves, decision curve analysis (DCA), and clinical impact curves (CIC) were used to assess the nomogram's clinical utility and net benefit.

RESULTS

The nomogram prediction model, which combined PLT, LNM, K, K, iAUC, and ADC, demonstrated good predictive performance. The combined model had an AUC of 0.951 (95% CI: 0.903-0.998), an accuracy of 0.873, a sensitivity of 1.000, and a specificity of 0.818. Both the DCA and CIC demonstrated good clinical applicability and net benefit.

CONCLUSION

The nomogram method demonstrated good potential in the preoperative individualized identification of MSI status in CRC patients. This tool can assist clinicians in adopting appropriate treatment strategies and optimizing personalized stratification for CRC patients.

摘要

目的

开发一种列线图,该列线图结合动态对比增强磁共振成像(DCE-MRI)灌注参数、表观扩散系数(ADC)值和临床特征,以术前识别结直肠癌(CRC)患者的微卫星不稳定性(MSI)。

方法

这项回顾性研究纳入了63例接受术前DCE-MRI检查且有免疫组化结果的CRC患者。两名放射科医生以双盲方式在DCE-MRI灌注图上灌注强度最高的区域以及ADC图上的相应区域放置两个圆形感兴趣区。测量灌注参数和ADC值,并将两名放射科医生的平均值用于后续分析。进行单因素分析以确定MSI的独立危险因素。然后通过将最显著的临床危险因素与DCE-MRI灌注参数相结合构建列线图。使用受试者操作特征(ROC)曲线评估模型的性能。校准曲线、决策曲线分析(DCA)和临床影响曲线(CIC)用于评估列线图的临床实用性和净效益。

结果

结合血小板计数(PLT)、淋巴结转移(LNM)、容量转移常数(Ktrans)、速率常数(Kep)、初始面积下的曲线下面积(iAUC)和ADC的列线图预测模型显示出良好的预测性能。联合模型的曲线下面积(AUC)为0.951(95%可信区间:0.903-0.998),准确率为0.873,灵敏度为1.000,特异性为0.818。DCA和CIC均显示出良好的临床适用性和净效益。

结论

列线图方法在术前个体化识别CRC患者的MSI状态方面显示出良好的潜力。该工具可协助临床医生为CRC患者采取适当的治疗策略并优化个性化分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1941/12102045/837265b17181/12672_2025_2705_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验