基于多模态超声的影像组学和深度学习用于O-RADS 4-5级附件包块的鉴别诊断

Multimodal ultrasound-based radiomics and deep learning for differential diagnosis of O-RADS 4-5 adnexal masses.

作者信息

Zeng Song, Jia Haoran, Zhang Hao, Feng Xiaoyu, Dong Meng, Lin Lin, Wang XinLu, Yang Hua

机构信息

Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.

Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.

出版信息

Cancer Imaging. 2025 May 23;25(1):64. doi: 10.1186/s40644-025-00883-z.

Abstract

BACKGROUND

Accurate differentiation between benign and malignant adnexal masses is crucial for patients to avoid unnecessary surgical interventions. Ultrasound (US) is the most widely utilized diagnostic and screening tool for gynecological diseases, with contrast-enhanced US (CEUS) offering enhanced diagnostic precision by clearly delineating blood flow within lesions. According to the Ovarian and Adnexal Reporting and Data System (O-RADS), masses classified as categories 4 and 5 carry the highest risk of malignancy. However, the diagnostic accuracy of US remains heavily reliant on the expertise and subjective interpretation of radiologists. Radiomics has demonstrated significant value in tumor differential diagnosis by extracting microscopic information imperceptible to the human eye. Despite this, no studies to date have explored the application of CEUS-based radiomics for differentiating adnexal masses. This study aims to develop and validate a multimodal US-based nomogram that integrates clinical variables, radiomics, and deep learning (DL) features to effectively distinguish adnexal masses classified as O-RADS 4-5.

METHODS

From November 2020 to March 2024, we enrolled 340 patients who underwent two-dimensional US (2DUS) and CEUS and had masses categorized as O-RADS 4-5. These patients were randomly divided into a training cohort and a test cohort in a 7:3 ratio. Adnexal masses were manually segmented from 2DUS and CEUS images. Using machine learning (ML) and DL techniques, five models were developed and validated to differentiate adnexal masses. The diagnostic performance of these models was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, specificity, precision, and F1-score. Additionally, a nomogram was constructed to visualize outcome measures.

RESULTS

The CEUS-based radiomics model outperformed the 2DUS model (AUC: 0.826 vs. 0.737). Similarly, the CEUS-based DL model surpassed the 2DUS model (AUC: 0.823 vs. 0.793). The ensemble model combining clinical variables, radiomics, and DL features achieved the highest AUC (0.929).

CONCLUSIONS

Our study confirms the effectiveness of CEUS-based radiomics for distinguishing adnexal masses with high accuracy and specificity using a multimodal US-based radiomics DL nomogram. This approach holds significant promise for improving the diagnostic precision of adnexal masses classified as O-RADS 4-5.

摘要

背景

准确区分附件包块的良恶性对于患者避免不必要的手术干预至关重要。超声(US)是妇科疾病最广泛使用的诊断和筛查工具,超声造影(CEUS)通过清晰描绘病变内的血流情况提高诊断精度。根据卵巢及附件报告和数据系统(O-RADS),分类为4类和5类的包块恶性风险最高。然而,US的诊断准确性仍严重依赖放射科医生的专业知识和主观判断。放射组学通过提取人眼无法察觉的微观信息,在肿瘤鉴别诊断中显示出重要价值。尽管如此,迄今为止尚无研究探讨基于CEUS的放射组学在鉴别附件包块中的应用。本研究旨在开发并验证一种基于多模态US的列线图,该列线图整合临床变量、放射组学和深度学习(DL)特征,以有效区分分类为O-RADS 4-5的附件包块。

方法

2020年11月至2024年3月,我们纳入了340例行二维超声(2DUS)和CEUS检查且包块分类为O-RADS 4-5的患者。这些患者按7:3的比例随机分为训练队列和测试队列。从2DUS和CEUS图像中手动分割附件包块。使用机器学习(ML)和DL技术,开发并验证了5种模型以鉴别附件包块。使用受试者操作特征(ROC)曲线下面积(AUC)、准确性(accuracy)、敏感性、特异性、阳性预测值和F1分数评估这些模型的诊断性能。此外,构建列线图以直观显示结果指标。

结果

基于CEUS的放射组学模型优于2DUS模型(AUC:0.826对0.737)。同样,基于CEUS的DL模型超过2DUS模型(AUC:0.823对0.793)。结合临床变量、放射组学和DL特征的整合模型获得最高AUC(0.929)。

结论

我们的研究证实了基于CEUS的放射组学使用基于多模态US的放射组学DL列线图以高准确性和特异性鉴别附件包块的有效性。这种方法在提高分类为O-RADS 4-5的附件包块的诊断精度方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a20/12100863/2eb8062b04ed/40644_2025_883_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索