Sandev T, Singh R K, Méndez V, Kocarev L
Korea University, Ss. Cyril and Methodius University, Macedonian Academy of Sciences and Arts, Research Center for Computer Science and Information Technologies, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia; Institute of Physics, Faculty of Natural Sciences and Mathematics, Arhimedova 3, 1000 Skopje, Macedonia; and Department of Physics, Seoul 02841, Korea.
Ben-Gurion University of the Negev, Department of Biomedical Engineering, Be'er Sheva 85105, Israel.
Phys Rev E. 2025 Apr;111(4-1):044105. doi: 10.1103/PhysRevE.111.044105.
We consider two different fractional generalizations of the heterogeneous telegrapher's process with and without stochastic resetting. Both governing fractional heterogeneous telegrapher's equations can be obtained from the corresponding standard heterogeneous telegrapher's equations by using the subordination approach. The first-passage time problems are solved analytically for both models by finding the survival probabilities, the first-passage time densities, and the mean first-passage times. We showed that for both cases there are optimal resetting rates for which the mean first-passage times are minimal. The present work carries implications toward our understanding of anomalous diffusion and random search in heterogeneous media.
我们考虑了具有和不具有随机重置的非均匀电报员过程的两种不同分数阶推广。通过从属方法,两种支配分数阶非均匀电报员方程都可以从相应的标准非均匀电报员方程得到。通过求出生存概率、首次通过时间密度和平均首次通过时间,对这两种模型的首次通过时间问题进行了解析求解。我们表明,对于这两种情况,都存在使平均首次通过时间最小的最优重置率。目前的工作对我们理解非均匀介质中的反常扩散和随机搜索具有启示意义。