Suppr超能文献

茚并四苯基晶体的电子结构与振动特性

Electronic Structure and Vibrational Properties of Indenotetracene-Based Crystal.

作者信息

Coppola Federico, Carfora Raoul, Rega Nadia

机构信息

Scuola Superiore Meridionale, Napoli, Italy.

Department of Chemical Sciences, University of Napoli Federico II, Napoli, Italy.

出版信息

J Comput Chem. 2025 May 30;46(14):e70141. doi: 10.1002/jcc.70141.

Abstract

Asymmetrically substituted indenotetracene crystals are promising nonfullerene electron transport materials for organic photovoltaics, offering potential improvements in efficiency and stability. In this work, we present a first-principle investigation of the electronic and vibrational properties of a diarylindenotetracene system functionalized with two methoxy groups (hereafter DimethoxyASI). Single-crystal X-ray diffraction analysis [reported in J. Org. Chem. 2018, 83, 4, 1828] reveals a monoclinic structure with an interplanar distance of 3.76 Å, providing insight into the molecular packing and intermolecular interactions that govern the solid-state organization. Notably, for the first time, in this work we identify two distinct dimeric species within the crystalline lattice by a structural and electronic analysis, each exhibiting different intermolecular arrangements that significantly influence both the electronic structure and vibrational properties of the material. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations provide insight into the molecular packing, electronic states, and vibrational characteristics of the crystal. The theoretical absorption spectrum, obtained from TDDFT calculations, features three main electronic transitions centered at 530, 360, and 275 nm, displaying a mixed character of localized excitations and charge-transfer contributions. The vibrational properties, investigated through phonon density of states calculations at the DFT level, highlight well-defined spectral features. While most vibrational modes remain consistent between monomeric and dimeric configurations, significant deviations emerge in the low-frequency region, where intermolecular interactions and crystal packing effects play a crucial role. Furthermore, the two dimeric species exhibit distinct electronic properties beyond their geometric differences. A key distinguishing factor is the transition electric dipole moments (TEDMs), which governs the probability and polarization of electronic transitions. Our analysis reveals that the TEDMs magnitude and orientation vary significantly between the two dimeric species, suggesting that they may interact differently with polarized light. These differences provide new insight into the role of molecular aggregation in shaping the optical response of organic semiconductors and highlight the impact of polymorphism on their electronic properties. Overall, this study underscores the intricate relationship between molecular packing, electronic structure, and vibrational properties in indenotetracene-based materials, contributing to a deeper understanding of their potential applications in optoelectronic devices.

摘要

不对称取代的茚并四苯晶体是用于有机光伏的有前景的非富勒烯电子传输材料,有望提高效率和稳定性。在这项工作中,我们对用两个甲氧基官能化的二芳基茚并四苯体系(以下简称二甲氧基ASI)的电子和振动性质进行了第一性原理研究。单晶X射线衍射分析[发表于《有机化学杂志》2018年,83卷,第4期,1828页]揭示了一种单斜结构,其面间距为3.76 Å,有助于深入了解控制固态结构的分子堆积和分子间相互作用。值得注意的是,在这项工作中,我们首次通过结构和电子分析在晶格中识别出两种不同的二聚体物种,每种二聚体都表现出不同的分子间排列,这对材料的电子结构和振动性质都有显著影响。密度泛函理论(DFT)和含时密度泛函理论(TDDFT)计算有助于深入了解晶体的分子堆积、电子态和振动特性。从TDDFT计算得到的理论吸收光谱具有三个主要的电子跃迁,中心分别位于530、360和275 nm,显示出局域激发和电荷转移贡献的混合特征。通过DFT水平的声子态密度计算研究的振动性质突出了明确的光谱特征。虽然大多数振动模式在单体和二聚体构型之间保持一致,但在低频区域出现了显著偏差,在该区域分子间相互作用和晶体堆积效应起着关键作用。此外,这两种二聚体物种除了几何差异外,还表现出不同的电子性质。一个关键的区别因素是跃迁电偶极矩(TEDMs),它控制着电子跃迁的概率和极化。我们的分析表明,两种二聚体物种之间的TEDMs大小和方向有显著差异,这表明它们与偏振光的相互作用可能不同。这些差异为分子聚集在塑造有机半导体光学响应中的作用提供了新的见解,并突出了多晶型对其电子性质的影响。总体而言,这项研究强调了茚并四苯基材料中分子堆积、电子结构和振动性质之间的复杂关系,有助于更深入地了解它们在光电器件中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/408d/12102687/e15457e37a8c/JCC-46-0-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验