Xie Aiwen, Yu Ziyi, Lei Junwei, Zhang Yi, Tian Ao, Jiang Xuewen, Xie Xinchun, Yin Yuewei, Fu Zhenqian, Li Xiaoguang, Zuo Ruzhong
Center for Advanced Ceramics, School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China.
State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
Adv Sci (Weinh). 2025 Jul;12(27):e2502916. doi: 10.1002/advs.202502916. Epub 2025 May 24.
Relaxor ferroelectrics exhibit giant potentials in capacitive energy storage, however, the scales of polar nanoregions determine the critical field values where the polarization saturation occurs. In this work, a mesoscopic structure engineered ergodic relaxor state is realized by adjusting submicron-grain scaled chemical homogenity, exhibiting polymorphic polar nanoregions of various scales in different grains. This produces a relatively continuous polarization switching with increasing the applied electric field from diverse grains, thus resulting in a linear-like polarization response feature. As a result, both a giant energy density (W) ≈15.4 J cm and a field-insensitive ultrahigh efficiency (η) ≈93.2% are simultaneously achieved at 78 kV mm in (Ba, Ca)(Ti, Zr)O-(BiNa)SnO lead-free ceramics. Moreover, both the mesoscopic structure heterogeneity and complex high internal stresses in ultrafine grains decrease the temperature sensitivity of the nanodomain structural features. Together with the suppressed high-temperature defect motion from high ceramic density and submicron grain size, a record-high temperature stability with W = 10.4±5% J cm and η = 96±3% is obtained at 65 kV mm and 0-250 °C, demonstrating great application potential of the studied ceramic in high-temperature energy storage capacitors. The proposed strategy in this work greatly expands the design mentality for next-generation high-performance energy-storage dielectrics.
弛豫铁电体在电容储能方面展现出巨大潜力,然而,极性纳米区域的尺度决定了极化饱和发生时的临界场值。在这项工作中,通过调整亚微米级晶粒尺度的化学均匀性实现了一种介观结构工程化的遍历弛豫态,在不同晶粒中呈现出各种尺度的多晶型极性纳米区域。这使得随着外加电场从不同晶粒增加,产生了相对连续的极化切换,从而导致类似线性的极化响应特征。结果,在(Ba,Ca)(Ti,Zr)O -(BiNa)SnO无铅陶瓷中,在78 kV/mm时同时实现了巨大的能量密度(W)≈15.4 J/cm³和场不敏感的超高效率(η)≈93.2%。此外,介观结构的不均匀性和超细晶粒中复杂的高内应力都降低了纳米畴结构特征的温度敏感性。再加上高陶瓷密度和亚微米晶粒尺寸抑制了高温下的缺陷运动,在65 kV/mm和0 - 250°C时获得了创纪录的高温稳定性,W = 10.4±5% J/cm³,η = 96±3%,证明了所研究陶瓷在高温储能电容器中的巨大应用潜力。这项工作中提出的策略极大地扩展了下一代高性能储能电介质的设计思路。