Peng Haonan, Wu Tiantian, Liu Zhen, Fu Zhengqian, Wang Dong, Hao Yanshuang, Xu Fangfang, Wang Genshui, Chu Junhao
Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Nat Commun. 2024 Jun 19;15(1):5232. doi: 10.1038/s41467-024-49107-1.
Dielectric ceramic capacitors with ultrahigh power densities are fundamental to modern electrical devices. Nonetheless, the poor energy density confined to the low breakdown strength is a long-standing bottleneck in developing desirable dielectric materials for practical applications. In this instance, we present a high-entropy tungsten bronze-type relaxor ferroelectric achieved through an equimolar-ratio element design, which realizes a giant recoverable energy density of 11.0 J·cm and a high efficiency of 81.9%. Moreover, the atomic-scale microstructural study confirms that the excellent comprehensive energy storage performance is attributed to the increased atomic-scale compositional heterogeneity from high configuration entropy, which modulates the relaxor features as well as induces lattice distortion, resulting in reduced polarization hysteresis and enhanced breakdown endurance. This study provides evidence that developing high-entropy relaxor ferroelectric material via equimolar-ratio element design is an effective strategy for achieving ultrahigh energy storage characteristics. Our results also uncover the immense potential of tetragonal tungsten bronze-type materials for advanced energy storage applications.
具有超高功率密度的介电陶瓷电容器是现代电气设备的基础。然而,由于低击穿强度导致的低能量密度,一直是开发适用于实际应用的理想介电材料的长期瓶颈。在此,我们展示了一种通过等摩尔比元素设计实现的高熵钨青铜型弛豫铁电体,其实现了11.0 J·cm的巨大可恢复能量密度和81.9%的高效率。此外,原子尺度的微观结构研究证实,优异的综合储能性能归因于高组态熵增加了原子尺度的成分不均匀性,这调节了弛豫特性并引起晶格畸变,从而减少了极化滞后并提高了击穿耐久性。这项研究证明,通过等摩尔比元素设计开发高熵弛豫铁电材料是实现超高储能特性的有效策略。我们的结果还揭示了四方钨青铜型材料在先进储能应用中的巨大潜力。