Li Huijuan, Wen Haiyun, Liu Jie, Luo Xinyu, Pei Boliang, Ge Peng, Sun Zhenxuan, Liu Jin, Wang Junjie, Chen Hailong
The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China.
Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China.
Hum Cell. 2025 May 24;38(4):107. doi: 10.1007/s13577-025-01227-6.
The endothelial glycocalyx is a dynamic brush-like layer composed of proteoglycans and glycosaminoglycans, including heparan sulfate (HS) and hyaluronic acid (HA), and is an important regulator of vascular homeostasis. Its structure (thickness ranges from 20 to 6450 nm in different species) not only provides a charge-selective barrier but also serves to anchor mechanosensors such as the glypican-1 (GPC-1)/caveolin-1 (CAV-1) complex and buffers shear stress. In severe acute pancreatitis (SAP), inflammatory factors promote the expression of matrix metalloproteinases (MMPs) and heparinases, which degrade syndecan-1 (SDC-1) and HS, while oxidative stress disrupts HA-CD44 binding, leading to increased capillary leakage and neutrophil adhesion. This degradation process occurs before the onset of multiple organ dysfunction syndrome (MODS), highlighting the potential of the glycocalyx as an early biomarker. More importantly, the regeneration of glycocalyx through endothelial cell synthesis of glycosaminoglycans (GAGs) and shear stress-driven SDC recycling provides therapeutic prospects. This review redefines the pathophysiology of severe acute pancreatitis-associated multiple organ dysfunction (SAP-MODS) by exploring the glycocalyx's central mechanistic role and proposes stabilizing glycocalyx structure as a potential strategy to prevent microcirculatory failure.
内皮糖萼是一层动态的刷状层,由蛋白聚糖和糖胺聚糖组成,包括硫酸乙酰肝素(HS)和透明质酸(HA),是血管稳态的重要调节因子。其结构(不同物种的厚度范围为20至6450纳米)不仅提供电荷选择性屏障,还用于锚定机械传感器,如磷脂酰肌醇蛋白聚糖-1(GPC-1)/小窝蛋白-1(CAV-1)复合物,并缓冲剪切应力。在重症急性胰腺炎(SAP)中,炎症因子促进基质金属蛋白酶(MMPs)和肝素酶的表达,这些酶会降解 syndecan-1(SDC-1)和HS,而氧化应激会破坏HA-CD44结合,导致毛细血管渗漏增加和中性粒细胞黏附。这种降解过程发生在多器官功能障碍综合征(MODS)发作之前,突出了糖萼作为早期生物标志物的潜力。更重要的是,通过内皮细胞合成糖胺聚糖(GAGs)和剪切应力驱动的SDC再循环实现糖萼的再生提供了治疗前景。本综述通过探索糖萼的核心机制作用重新定义了重症急性胰腺炎相关性多器官功能障碍(SAP-MODS)的病理生理学,并提出稳定糖萼结构作为预防微循环衰竭的潜在策略。
J Trauma Acute Care Surg. 2025-4-10
Cochrane Database Syst Rev. 2017-4-21
Acta Anaesthesiol Scand. 2021-5
JPEN J Parenter Enteral Nutr. 2006
Orv Hetil. 2008-11-23
Arch Ital Urol Androl. 2025-6-30
Biochem Biophys Res Commun. 2024-7-5
Front Cell Dev Biol. 2024-3-18