Göpfert Maximilian, Yang Jing, Rabadiya Dhyeykumar, Riedel Dietmar, Moussian Bernard, Behr Matthias
Cell & Developmental Biology, Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, Leipzig 04103, Germany.
Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.
Acta Biomater. 2025 Aug;202:377-393. doi: 10.1016/j.actbio.2025.05.046. Epub 2025 May 22.
Exo- and Endoskeleton function enables muscle-mediated locomotion in animals. In mammals, the defective protein matrix of bones found in systematic skeletal disorders such as osteoporosis causes fractures and severe skeletal deformations under high muscle tension. We identified an analogous mechanism for integrating muscle-mediated tension into the apical extracellular matrix (aECM) of the invertebrate body wall exoskeleton. Obstructor chitin-binding proteins, the chitin deacetylases, Chitinases, and the matrix-protecting proteins Knickkopf and Retroactive are epidermally expressed during late embryogenesis. Their control of forming epidermal chitinous structures protects the exoskeletal aECM from collapsing when embryos start moving and hatch as larvae. In a larval locomotion assay we tested the function of these cuticle related genes. Gene mutations and knockdowns caused changes in normal movement behavior and lower the speed of larvae. Moreover, we found that the transmembrane Zona Pellucida domain protein Piopio provides the adhesion between the epidermal apical membrane and the overlaying chitinous aECM in a matriptase-dependent manner. A failure of Piopio and chitin-associated proteins leads to exoskeletal deformations and detachment from the epidermal membrane, destabilizing muscle forces and impairing larval mobility. Our data identifies a protein network that transforms the chitinous aECM into a stable exoskeleton that directly resists muscle impact at epidermal tendon cells, thereby serving locomotion. Demonstrating the importance of these proteins in producing aECM as a three-dimensional cuticular scaffold for exoskeletal function opens up opportunities for the development of biomimetic applications of synthetic materials. STATEMENT OF SIGNIFICANCE: Chitin-based materials include hydrogels, microcapsules, membranous films, sponges, tubes, and various porous structures. In nature, chitin structures form cuticles, which serves as the exoskeleton of arthropods. Using Drosophila melanogaster, we have performed systematic analyses to identify the proteins and enzymes that organize chitin polymers in 3D structures of the cuticle exoskeleton. Three-dimensional laser-scanning and ultrastructural electron microscopy revealed deformations of the cuticle structure, lack of cellular cuticle adhesion, and overall changes in the flexibility of the chitin-based material, leading to insufficient function of the exoskeleton. Components such as the identified proteins and enzymes, which play a unique role in the organization of the chitin fibers and the formation of the exoskeleton, offer suitable materials for tissue engineering for biomimetic applications.
外骨骼和内骨骼功能使动物能够进行肌肉介导的运动。在哺乳动物中,系统性骨骼疾病(如骨质疏松症)中发现的骨骼缺陷蛋白基质会导致在高肌肉张力下发生骨折和严重的骨骼变形。我们发现了一种类似的机制,可将肌肉介导的张力整合到无脊椎动物体壁外骨骼的顶端细胞外基质(aECM)中。阻碍物几丁质结合蛋白、几丁质脱乙酰酶、几丁质酶以及基质保护蛋白Knickkopf和Retroactive在胚胎发育后期在表皮中表达。它们对表皮几丁质结构形成的控制可保护外骨骼aECM在胚胎开始移动并孵化成幼虫时不会塌陷。在幼虫运动试验中,我们测试了这些与表皮相关基因的功能。基因突变和基因敲低导致正常运动行为发生变化,并降低了幼虫的速度。此外,我们发现跨膜透明带结构域蛋白Piopio以一种依赖于matriptase的方式提供表皮顶端膜与覆盖的几丁质aECM之间的粘附。Piopio和几丁质相关蛋白的缺失会导致外骨骼变形以及与表皮膜分离,从而破坏肌肉力量并损害幼虫的移动能力。我们的数据确定了一个蛋白质网络,该网络将几丁质aECM转化为稳定的外骨骼,直接抵抗表皮肌腱细胞处的肌肉冲击,从而实现运动功能。证明这些蛋白质在产生作为外骨骼功能的三维表皮支架的aECM中的重要性,为合成材料的仿生应用开发提供了机会。
基于几丁质的材料包括水凝胶、微胶囊、膜状薄膜、海绵、管子和各种多孔结构。在自然界中,几丁质结构形成表皮,作为节肢动物的外骨骼。我们利用黑腹果蝇进行了系统分析,以确定在表皮外骨骼的三维结构中组织几丁质聚合物的蛋白质和酶。三维激光扫描和超微结构电子显微镜揭示了表皮结构的变形、细胞与表皮的粘附缺失以及基于几丁质材料柔韧性的整体变化,导致外骨骼功能不足。所鉴定的蛋白质和酶等成分在几丁质纤维的组织和外骨骼的形成中发挥独特作用,为仿生应用的组织工程提供了合适的材料。