文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

锝标记的聚天冬氨酸/二氧化硅纳米组装体的合成作为一种潜在的骨成像探针。

Synthesis of Tc-labeled polyaspartic acid/silica nanoassembly as a potential probe for bone imaging.

作者信息

Bayoumi Noha A, Sayyed Marwa E, Darwish Wael M

机构信息

Department of Radiolabeled Compounds, Hot Labs Centre, Egyptian Atomic Energy Authority (EAEA), 13759, Cairo, Egypt.

Department of Polymers and Pigments, National Research Centre, Elbohooth Street, Dokki12622, Giza, Egypt.

出版信息

BMC Chem. 2025 May 24;19(1):142. doi: 10.1186/s13065-025-01508-z.


DOI:10.1186/s13065-025-01508-z
PMID:40413557
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12102942/
Abstract

PURPOSE: Due to the efficient bone targeting of mesoporous silica nanoparticles (MSNs) and polyaspartic acid (PASP), Tc- labeled polyaspartic acid coated mesoporous silica nanoparticles (PASP-mSiO-DTPA-Tc) are proposed as a potential probe for bone imaging. METHODS: Polyaspartic acid-conjugated silica nanoparticles (PASP-mSiO) were synthesized using aqueous carbodiimide chemistry and characterized by ATR-FTR, FE-SEM, EDX, TEM, TGA and XRD. Radiolabeling of the produced nanoassembly with Tc was carried out via a simple DTPA chelation procedure. Aqueous dispersion of the radiolabeled nanoparticles was intravenously injected into normal mice and the bone targeting efficiency was evaluated. RESULTS: The PASP-mSiO nanoassembly was efficiently synthesized and radiolabeled with Tc with a high radiochemical yield (92 ± 0.5%) and sufficient in vitro stability in PBS and FBS for up to 24 h. In vivo biodistribution studies revealed a significant enhancement of radioactivity bone uptake after intravenous injection of PASP-mSiO-DTPA-Tc compared to radiolabeled uncoated MSNs (mSiO-DTPA-Tc), (13 ± 0.6% IA/gram and 5.4 ± 0.4, respectively). CONCLUSION: PASP endowed MSNs with enhanced biocompatibility and highly selective bone targeting. Therefore, the proposed PASP-mSiO-DTPA-Tc nanoassembly has immense potential in the field of bone- imaging via single photon emitting computed tomography (SPECT).

摘要

目的:由于介孔二氧化硅纳米颗粒(MSNs)和聚天冬氨酸(PASP)具有高效的骨靶向性,因此提出用锝标记的聚天冬氨酸包覆介孔二氧化硅纳米颗粒(PASP-mSiO-DTPA-Tc)作为骨成像的潜在探针。 方法:采用水性碳二亚胺化学合成聚天冬氨酸共轭二氧化硅纳米颗粒(PASP-mSiO),并通过衰减全反射傅里叶变换红外光谱(ATR-FTR)、场发射扫描电子显微镜(FE-SEM)、能谱仪(EDX)、透射电子显微镜(TEM)、热重分析仪(TGA)和X射线衍射仪(XRD)进行表征。通过简单的二乙三胺五乙酸(DTPA)螯合程序对制备的纳米组装体进行锝标记。将放射性标记纳米颗粒的水分散液静脉注射到正常小鼠体内,评估骨靶向效率。 结果:高效合成了PASP-mSiO纳米组装体,并用锝进行标记,放射化学产率高(92±0.5%),在磷酸盐缓冲盐水(PBS)和胎牛血清(FBS)中具有足够的体外稳定性,长达24小时。体内生物分布研究表明,静脉注射PASP-mSiO-DTPA-Tc后,与放射性标记的未包覆MSNs(mSiO-DTPA-Tc)相比,骨摄取放射性显著增强(分别为13±0.6%注射活度/克和5.4±0.4)。 结论:PASP赋予MSNs增强的生物相容性和高度选择性的骨靶向性。因此,所提出的PASP-mSiO-DTPA-Tc纳米组装体在通过单光子发射计算机断层扫描(SPECT)进行骨成像领域具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/08e5f85ca9e6/13065_2025_1508_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/3df1111486dc/13065_2025_1508_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/022dace2eaa6/13065_2025_1508_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/9fc640d2e129/13065_2025_1508_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/a8cc16b83fce/13065_2025_1508_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/017112ad147e/13065_2025_1508_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/51a7a8442eed/13065_2025_1508_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/1e84c59a66b3/13065_2025_1508_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/12a55d502fa3/13065_2025_1508_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/c709cee952af/13065_2025_1508_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/08e5f85ca9e6/13065_2025_1508_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/3df1111486dc/13065_2025_1508_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/022dace2eaa6/13065_2025_1508_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/9fc640d2e129/13065_2025_1508_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/a8cc16b83fce/13065_2025_1508_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/017112ad147e/13065_2025_1508_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/51a7a8442eed/13065_2025_1508_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/1e84c59a66b3/13065_2025_1508_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/12a55d502fa3/13065_2025_1508_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/c709cee952af/13065_2025_1508_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb28/12102942/08e5f85ca9e6/13065_2025_1508_Fig9_HTML.jpg

相似文献

[1]
Synthesis of Tc-labeled polyaspartic acid/silica nanoassembly as a potential probe for bone imaging.

BMC Chem. 2025-5-24

[2]
Synthesis, characterization, and biodistribution studies of (99m)Tc-labeled SBA-16 mesoporous silica nanoparticles.

Mater Sci Eng C Mater Biol Appl. 2015-6-16

[3]
Design of Tc-Labeled Low Generation Dendrimer-Entrapped Gold Nanoparticles for Targeted Single Photon Emission Computed Tomography/Computed Tomography Imaging of Gliomas.

J Biomed Nanotechnol. 2019-6-1

[4]
Tc radiolabeling of polyethylenimine capped carbon dots for tumor targeting: synthesis, characterization and biodistribution.

Int J Radiat Biol. 2021

[5]
99mTc-labeled estradiol as an estrogen receptor probe: Preparation and preclinical evaluation.

Nucl Med Biol. 2016-1

[6]
Preclinical Evaluation of a Novel Tc-Labeled CB86 for Rheumatoid Arthritis Imaging.

ACS Omega. 2020-11-30

[7]
Preparation, radiolabeling with Tc and Ga and biodistribution studies of albumin nanoparticles covered with polymers.

Rev Esp Med Nucl Imagen Mol (Engl Ed). 2020

[8]
Radiolabeling and Preliminary Evaluation of Tc-Labeled DNA Cube Nanoparticles as Potential Tracers for SPECT Imaging.

Int J Nanomedicine. 2021

[9]
Preclinical evaluation of isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu for folate receptor-positive tumor targeting.

Ann Nucl Med. 2016-6

[10]
SPECT/CT imaging of radiolabeled cubosomes and hexosomes for potential theranostic applications.

Biomaterials. 2013-8-7

本文引用的文献

[1]
Antibiotic delivery from bone-targeted mesoporous silica nanoparticles for the treatment of osteomyelitis caused by methicillin-resistant Staphylococcus aureus.

Acta Biomater. 2022-12

[2]
Mesoporous silica-based hybrid materials for bone-specific drug delivery.

Nanoscale Adv. 2019-7-3

[3]
Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade.

Int J Mol Sci. 2022-4-30

[4]
Bone infection site targeting nanoparticle-antibiotics delivery vehicle to enhance treatment efficacy of orthopedic implant related infection.

Bioact Mater. 2022-2-12

[5]
Mesoporous Silica Nanoparticles Functionalized with Amino Groups for Biomedical Applications.

ChemistryOpen. 2021-12

[6]
Recent Progress in Technetium-99m-Labeled Nanoparticles for Molecular Imaging and Cancer Therapy.

Nanomaterials (Basel). 2021-11-10

[7]
Tc radiolabeling of polyethylenimine capped carbon dots for tumor targeting: synthesis, characterization and biodistribution.

Int J Radiat Biol. 2021

[8]
Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications.

ACS Biomater Sci Eng. 2021-6-14

[9]
A traceable and bone-targeted nanoassembly based on defect-related luminescent mesoporous silica for enhanced osteogenic differentiation.

J Mater Chem B. 2017-2-28

[10]
Mesoporous Silica Nanoparticles for the Treatment of Complex Bone Diseases: Bone Cancer, Bone Infection and Osteoporosis.

Pharmaceutics. 2020-1-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索