Servicio Medicina Nuclear, Hospital Universitario Marqués de Valdecilla, Santander, España; Grupo de investigación Imagen Molecular (IDIVAL), Universidad de Cantabria, Santander, España.
Unidad de Radiofarmacia, Servicio Medicina Nuclear, Clínica Universidad de Navarra, IdiSNA, Pamplona, España.
Rev Esp Med Nucl Imagen Mol (Engl Ed). 2020 Jul-Aug;39(4):225-232. doi: 10.1016/j.remn.2020.02.002. Epub 2020 Mar 20.
To optimize radiolabeling with Tc and Ga of albumin nanoparticles coated with 4 differents synthetic polymers and to evaluate their stability in vivo and in vitro, as well as their biodistribution in vivo after intravenous administration.
The nanoparticles were prepared using albumin and NOTA-modified albumin by the desolvation method and coated with 4 different polymers; HPMC, GMN2, GPM2 and GTM2. They were purified, lyophilized and characterized. Radiolabelling with Tc was perfomed with 74 MBq of Tc sodium pertechnetate, previously reduced with and acid solution of tin chloride at different concentrations (0.003, 0.005, 0.007, 0.01, 0.05 and 0.1mg/ml) and at different times (5, 10, 15, 30 and 60minutes) and temperatures (room temperature, 40°C and 60°C). Radiolabelling with Ga was perfomed by incubation of the nanoparticles with 37 MBq of Gallium chloride (obtained from commercial gallium- citrate) at different times (10 and 30minutes) and temperatures (room temperature, 30°C and 60°C), and posterior purification with microconcentrators. The radiochemical purity was evaluated by TLC. Stability studies of radiolabeled nanoparticles in physiological serum and blood plasma were perfomed. Biodistribution studies of nanoparticles coated with GPM2 polymer were carried out in Wistar rats after intravenous administration of the nanoparticles. Control animals were carried out with Tc sodium pertechnetate and Ga chloride. To do so, the animals were killed and activity in organs was measured in a gamma counter.
Tc labeling was carried out optimally with a tin concentration of 0.007mg/ ml for the GPM2 nanoparticles and 0.005mg / ml for the rest of the formulations, with a radiolabelling time of 10minutes at room temperature. In the case of Ga the label was optimized at 30° C temperature and 30minutes of incubation. In both cases the radiochemical purity obtained was greater than 97%. The nanoparticles showed high stability in vitro after 48hours of labeling (70% nanoparticles labeled with Tc and 90% those labeled with Ga). Biodistribution studies of nanoparticles Tc -GPM2 and Ga -NOTA-GPM2 showed a high accumulation of activity in the liver at 2 and 24hours after intravenous administration.
The labeling procedure with Tc and Ga of albumin and albumin modified with NOTA nanoparticles allows obtaining nanoparticles with high labeling yields and adequate in vitro stability, allowing their use for in vivo studies.
优化不同合成聚合物包裹的白蛋白纳米颗粒的 Tc 和 Ga 放射性标记,并评估其在体内和体外的稳定性,以及静脉注射后体内的生物分布。
使用白蛋白和 NOTA 修饰的白蛋白通过去溶剂法制备纳米颗粒,并包裹 4 种不同的聚合物;HPMC、GMN2、GPM2 和 GTM2。对其进行纯化、冻干和表征。用 74MBq 的 Tc 酸钠高锝酸盐进行 Tc 放射性标记,用不同浓度(0.003、0.005、0.007、0.01、0.05 和 0.1mg/ml)和不同时间(5、10、15、30 和 60 分钟)和温度(室温、40°C 和 60°C)用盐酸锡溶液预先还原。用 37MBq 的氯化镓(从商业的柠檬酸镓中获得)孵育纳米颗粒进行 Ga 放射性标记,孵育时间为 10 和 30 分钟,温度为室温、30°C 和 60°C,然后用微孔浓缩器进行纯化。用 TLC 评估放射化学纯度。在生理血清和血浆中进行标记的纳米颗粒的稳定性研究。用静脉注射 GPM2 聚合物包裹的纳米颗粒后在 Wistar 大鼠中进行纳米颗粒的生物分布研究。用 Tc 酸钠高锝酸盐和 Ga 氯化物进行对照动物实验。为此,杀死动物并用伽马计数器测量器官中的活性。
对于 GPM2 纳米颗粒,最佳 Tc 标记条件为锡浓度为 0.007mg/ml,其余配方为 0.005mg/ml,室温下标记时间为 10 分钟。对于 Ga,标记优化温度为 30°C,孵育时间为 30 分钟。在这两种情况下,获得的放射化学纯度均大于 97%。标记后 48 小时,纳米颗粒在体外表现出很高的稳定性(Tc 标记的纳米颗粒有 70%,Ga 标记的纳米颗粒有 90%)。Tc-GPM2 纳米颗粒和 Ga-NOTA-GPM2 纳米颗粒的生物分布研究显示,静脉注射后 2 和 24 小时,肝脏中活性的积累很高。
NOTA 修饰的白蛋白和白蛋白纳米颗粒的 Tc 和 Ga 标记程序允许获得具有高标记产率和适当体外稳定性的纳米颗粒,从而可以用于体内研究。