文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

死亡率风险预测中的异质性:加拿大老龄化纵向研究中弱势成年人的研究

Heterogeneity in mortality risk prediction: a study of vulnerable adults in the Canadian longitudinal study on aging.

作者信息

Ndiaye Mame Fana, Keezer Mark R, Nguyen Quoc Dinh

机构信息

Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.

School of Public Health of the Université de Montréal, Department of Social and Preventive Medicine, Montreal, Canada.

出版信息

Aging Clin Exp Res. 2025 May 26;37(1):165. doi: 10.1007/s40520-025-03063-y.


DOI:10.1007/s40520-025-03063-y
PMID:40415079
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12104110/
Abstract

BACKGROUND: Mortality prediction models are essential for clinical decision-making, but their performance may vary across patient subgroups. This study aimed to evaluate how a general mortality prediction model performs across subgroups defined by vulnerability factors and to test whether model improvements could improve prediction accuracy. METHODS: We analyzed data from 49,266 participants in the Canadian Longitudinal Study on Aging. A general mortality prediction model (Model A) was developed using Cox proportional hazard regression with LASSO, incorporating variables spanning sociodemographic factors, lifestyle habits, comorbidities, and physical/cognitive function measures. Performance was evaluated across subgroups defined by age, frailty, multimorbidity, cognitive function, and functional impairment using discrimination (c-index), calibration, and Brier scores. We tested two additional strategies: incorporating subgroup-specific variables (Model B) and developing tailored models for different mortality risk categories (Models C1, C2, C3). RESULTS: Over a median 6-year follow-up, 7.5% (3672) participants died. The general model performed well overall (c-index: 0.82, 95% CI 0.80-0.84; Brier: 0.036, 95% CI 0.032-0.040), but performance varied across subgroups. It was lower in frail individuals (c-index: 0.73, 95% CI 0.71-0.75; Brier: 0.12, 95% CI 0.11-0.13) and those with multiple chronic conditions (c-index: 0.76, 95% CI 0.75-0.78; Brier: 0.08, 95% CI 0.07-0.08), with risk underestimated in these groups. Neither incorporating subgroup variables nor developing risk-stratified models significantly improved performance. CONCLUSION: Important variability in performance, particularly in vulnerable groups, highlights the limitations of a one-size-fits-all and underscores the need for more granular predictive models that account for subpopulation-specific characteristics to enhance mortality risk prediction.

摘要

背景:死亡率预测模型对临床决策至关重要,但其性能在不同患者亚组中可能有所不同。本研究旨在评估一个通用的死亡率预测模型在由脆弱因素定义的亚组中的表现,并测试模型改进是否能提高预测准确性。 方法:我们分析了加拿大老龄化纵向研究中49266名参与者的数据。使用带有LASSO的Cox比例风险回归开发了一个通用死亡率预测模型(模型A),纳入了社会人口学因素、生活习惯、合并症以及身体/认知功能测量等变量。使用区分度(c指数)、校准和Brier分数,对由年龄、虚弱、多种疾病、认知功能和功能障碍定义的亚组的性能进行了评估。我们测试了另外两种策略:纳入亚组特定变量(模型B)以及为不同死亡率风险类别开发定制模型(模型C1、C2、C3)。 结果:在中位6年的随访期内,7.5%(3672名)参与者死亡。通用模型总体表现良好(c指数:0.82,95%置信区间0.80 - 0.84;Brier分数:0.036,95%置信区间0.032 - 0.040),但在各亚组中的表现有所不同。在虚弱个体(c指数:0.73,95%置信区间0.71 - 0.75;Brier分数:0.12,95%置信区间0.11 - 0.13)和患有多种慢性病的个体(c指数:0.76,95%置信区间0.75 - 0.78;Brier分数:0.08,95%置信区间0.07 - 0.08)中表现较低,这些组中的风险被低估。纳入亚组变量和开发风险分层模型均未显著提高性能。 结论:性能的重要变异性,尤其是在弱势群体中,凸显了一刀切方法的局限性,并强调需要更精细的预测模型,该模型应考虑亚人群特定特征以增强死亡率风险预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23d/12104110/32dd5ea55602/40520_2025_3063_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23d/12104110/9e19c18e5d4b/40520_2025_3063_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23d/12104110/5be7a66b6740/40520_2025_3063_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23d/12104110/32dd5ea55602/40520_2025_3063_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23d/12104110/9e19c18e5d4b/40520_2025_3063_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23d/12104110/5be7a66b6740/40520_2025_3063_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23d/12104110/32dd5ea55602/40520_2025_3063_Fig3_HTML.jpg

相似文献

[1]
Heterogeneity in mortality risk prediction: a study of vulnerable adults in the Canadian longitudinal study on aging.

Aging Clin Exp Res. 2025-5-26

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Development and validation of a predictive model for frailty risk in older adults with cardiovascular-metabolic comorbidities.

Front Public Health. 2025-4-22

[4]
Joint association of frailty index and biological aging with all-cause and cause-specific mortality: a population-based longitudinal cohort study.

Arch Gerontol Geriatr. 2025-7

[5]
Frailty Risk Patterns and Mortality Prediction in Community-Dwelling Older Adults: A 3-Year Longitudinal Study.

J Am Med Dir Assoc. 2025-1

[6]
Improvement of Risk Prediction After Transcatheter Aortic Valve Replacement by Combining Frailty With Conventional Risk Scores.

JACC Cardiovasc Interv. 2018-2-26

[7]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[8]
Comparison of three frailty measures for predicting hospitalization and mortality in the Canadian Longitudinal Study on Aging.

Aging Clin Exp Res. 2024-2-29

[9]
Nutritional risk and adverse health outcomes in Chinese community-dwelling older adults: A study based on the Elderly Nutritional Indicators for Geriatric Malnutrition Assessment (ENIGMA).

Nutrition. 2024-10

[10]
Comparison of 3 Aging Metrics in Dual Declines to Capture All-Cause Dementia and Mortality Risk: Cohort Study.

JMIR Aging. 2025-1-30

本文引用的文献

[1]
Uncertainty of risk estimates from clinical prediction models: rationale, challenges, and approaches.

BMJ. 2025-2-13

[2]
Clinical prediction models and the multiverse of madness.

BMC Med. 2023-12-18

[3]
Systematic reviews of machine learning in healthcare: a literature review.

Expert Rev Pharmacoecon Outcomes Res. 2024-1

[4]
Cognitive impairment indicator for the neuropsychological test batteries in the Canadian Longitudinal Study on Aging: definition and evidence for validity.

Alzheimers Res Ther. 2023-10-5

[5]
Optimizing Clinical Decision Making with Decision Curve Analysis: Insights for Clinical Investigators.

Healthcare (Basel). 2023-8-10

[6]
Generalizability challenges of mortality risk prediction models: A retrospective analysis on a multi-center database.

PLOS Digit Health. 2022-4-5

[7]
Development and External Validation of a Mortality Prediction Model for Community-Dwelling Older Adults With Dementia.

JAMA Intern Med. 2022-11-1

[8]
A Unified Framework on Generalizability of Clinical Prediction Models.

Front Artif Intell. 2022-4-29

[9]
Integrating predictive models into care: facilitating informed decision-making and communicating equity issues.

Am J Manag Care. 2022-1

[10]
Geographic Distribution of US Cohorts Used to Train Deep Learning Algorithms.

JAMA. 2020-9-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索