Ikeda Kurakawa Kayo, Okada Akira, Konishi Takaaki, Michihata Nobuaki, Ishimaru Miho, Matsui Hiroki, Fushimi Kiyohide, Yasunaga Hideo, Yamauchi Toshimasa, Nangaku Masaomi, Kadowaki Takashi, Yamaguchi Satoko
Department of Prevention of Diabetes and Lifestyle-Related Diseases, The University of Tokyo, Tokyo, Japan.
Department of Breast and Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
JMA J. 2025 Apr 28;8(2):568-579. doi: 10.31662/jmaj.2024-0333. Epub 2025 Apr 4.
Utilizing a nationwide inpatient database in Japan, we aimed to develop a novel comorbidity score for pediatric patients to predict in-hospital mortality-the Children Comorbidity Score (CCS)-based on the International Classification of Diseases, 10th Revision (ICD-10) codes.
We retrospectively analyzed pediatric patients hospitalized between 2010 and 2017 using the Japanese Diagnosis Procedure Combination database. Eighty percent of the data was used as a training set, where we applied Lasso regression to a model with 56 candidate comorbidity categories to predict in-hospital mortality. We employed the 1-standard-error rule in Lasso regression to derive a parsimonious model and forced the entry of 12 categories of pediatric Complex Chronic Conditions (CCC). Thus, we developed the CCS, an integer-based comorbidity score using the selected variables with nonzero coefficients. The remaining 20% of the data was used as the test set, where we evaluated the CCS's predictive performance using C-statistics, calibration, and decision curve analysis, comparing it with two other scores: a CCC-based score using ICD-10 codes and the Charlson Comorbidity Index (CCI).
Among 1,968,960 pediatric patients, we observed 6,492 (0.33%) in-hospital mortalities. The developed integer-based CCS, utilizing 10 comorbidity categories via variable selection by Lasso regression, had better discrimination ability (C-statistics, 0.720 [95% confidence intervals (CI), 0.707-0.734]) than the CCC (0.649 [0.636-0.662]) and CCI (0.544 [0.533-0.555]). The superior discrimination of the CCS was consistent across all age categories, sexes, and body mass index categories. The CCS showed good calibration, with a calibration slope of 1.027 (95% CI, 0.981-1.073). Decision curve analysis indicated that the CCS provided the highest net benefit compared to either of the reference models.
The ICD-10-based CCS outperformed conventional comorbidity scores in predicting in-hospital mortality and would be useful in comorbidity assessment among pediatric inpatients.
利用日本全国住院患者数据库,我们旨在基于国际疾病分类第10版(ICD - 10)编码,开发一种用于儿科患者的新型合并症评分系统,以预测住院死亡率——儿童合并症评分(CCS)。
我们使用日本诊断程序组合数据库对2010年至2017年期间住院的儿科患者进行回顾性分析。80%的数据用作训练集,我们将套索回归应用于一个包含56个候选合并症类别的模型,以预测住院死亡率。我们在套索回归中采用1标准误规则来推导一个简约模型,并强制纳入12类儿科复杂慢性病(CCC)。因此,我们开发了CCS,这是一种基于整数的合并症评分,使用具有非零系数的选定变量。其余20%的数据用作测试集,我们使用C统计量、校准和决策曲线分析评估CCS的预测性能,并将其与其他两个评分进行比较:一个基于ICD - 10编码的基于CCC的评分和查尔森合并症指数(CCI)。
在1,968,960名儿科患者中,我们观察到6,492例(0.33%)住院死亡病例。通过套索回归进行变量选择,利用10个合并症类别开发的基于整数的CCS,其辨别能力(C统计量,0.720 [95%置信区间(CI),0.707 - 0.734])优于CCC(0.649 [0.636 - 0.662])和CCI(0.544 [0.533 - 0.555])。CCS的卓越辨别能力在所有年龄类别、性别和体重指数类别中均一致。CCS显示出良好的校准,校准斜率为1.027(95% CI,0.981 - 1.073)。决策曲线分析表明,与任何一个参考模型相比,CCS提供的净效益最高。
基于ICD - 10的CCS在预测住院死亡率方面优于传统的合并症评分,将有助于儿科住院患者的合并症评估。