Chervu Nikhil L, Balian Jeff, Verma Arjun, Sakowitz Sara, Cho Nam Yong, Mallick Saad, Russell Tara A, Benharash Peyman
Cardiovascular Outcomes Research Laboratories (CORELAB), David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
Division of Colorectal Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
Ann Surg. 2024 Sep 24. doi: 10.1097/SLA.0000000000006544.
To create a novel comorbidity score tailored for surgical database research.
Despite their use in surgical research, the Elixhauser (ECI) and Charlson Comorbidity Indices (CCI) were developed nearly four decades ago utilizing primarily non-surgical cohorts.
Adults undergoing 62 operations across 14 specialties were queried from the 2019 National Inpatient Sample (NIS) using International Classification of Diseases, 10th Revision (ICD-10) codes. ICD-10 codes for chronic diseases were sorted into Clinical Classifications Software Refined (CCSR) groups. CCSR with non-zero feature importance across four machine learning algorithms predicting in-hospital mortality were used for logistic regression; resultant coefficients were used to calculate the Comorbid Operative Risk Evaluation (CORE) score based on previously validated methodology. Areas under the receiver operating characteristic (AUROC) with 95% Confidence Intervals (CI) were used to compare model performance in predicting in-hospital mortality for the CORE score, ECI, and CCI. Validation was performed using the 2016-2018 NIS, combined 2018-2019 Florida and New York State Inpatient Databases (SID), and 2016-2022 institutional data.
699,155 records from the 2019 NIS were used for model development. The CORE score better predicted in-hospital mortality compared to the ECI within the NIS (0.90, 95%CI:0.90-0.90 vs. 0.84, 95%CI:0.84-0.84), SID (0.91, 95%CI:0.90-0.91 vs. 0.86, 95%CI:0.86-0.87), and institutional (0.88, 95%CI:0.87-0.89 vs. 0.84, 95%CI:0.83-0.85) databases (all P<0.001). Likewise, it outperformed the CCI for the NIS (0.76, 95%CI:0.76-0.76), SID (0.78, 95%CI:0.77-0.78), and institutional (0.62, 95%CI:0.60-0.64) cohorts (all P<0.001).
The CORE score may better predict in-hospital mortality after surgery due to comorbid diseases in outcome-based research.
创建一个专门为外科数据库研究量身定制的新型合并症评分系统。
尽管Elixhauser合并症指数(ECI)和Charlson合并症指数(CCI)在外科研究中得到应用,但它们是近四十年前主要利用非外科队列开发的。
使用国际疾病分类第十版(ICD-10)编码,从2019年国家住院患者样本(NIS)中查询接受14个专科62种手术的成年人。将慢性病的ICD-10编码分类到临床分类软件细化版(CCSR)组中。在预测住院死亡率的四种机器学习算法中具有非零特征重要性的CCSR用于逻辑回归;所得系数用于根据先前验证的方法计算合并手术风险评估(CORE)评分。使用具有95%置信区间(CI)的受试者工作特征曲线下面积(AUROC)来比较CORE评分、ECI和CCI在预测住院死亡率方面的模型性能。使用2016 - 2018年NIS、2018 - 2019年佛罗里达州和纽约州住院患者数据库(SID)组合以及2016 - 2022年机构数据进行验证。
2019年NIS的699155条记录用于模型开发。在NIS(0.90,95%CI:0.90 - 0.90对比0.84,95%CI:0.84 - 0.84)、SID(0.91,95%CI:0.90 - 0.91对比0.86,95%CI:0.86 - 0.87)和机构数据库(0.88,95%CI:0.87 - 0.89对比0.84,95%CI:0.83 - 0.85)中,CORE评分在预测住院死亡率方面比ECI表现更好(所有P<0.001)。同样地,在NIS(0.76,95%CI:0.76 - 0.76)、SID(0.78,95%CI:0.77 - 0.78)和机构队列(0.62,95%CI:0.60 - 0.64)中,CORE评分也优于CCI(所有P<0.001)。
在基于结果的研究中,CORE评分可能能更好地预测合并症导致的手术后住院死亡率。