Suppr超能文献

通过高通量筛选实验与计算化学相结合探索泊沙康唑的共晶情况

Exploring the Cocrystal Landscape of Posaconazole by Combining High-Throughput Screening Experimentation with Computational Chemistry.

作者信息

Guidetti Matteo, Hilfiker Rolf, Kuentz Martin, Bauer-Brandl Annette, Blatter Fritz

机构信息

Solid-State Development Department, Solvias AG, Römerpark 2, CH-4303Kaiseraugst, Switzerland.

Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, CH-4132Muttenz, Switzerland.

出版信息

Cryst Growth Des. 2022 Dec 23;23(2):842-852. doi: 10.1021/acs.cgd.2c01072. eCollection 2023 Feb 1.

Abstract

The development of multicomponent crystal forms, such as cocrystals, represents a means to enhance the dissolution and absorption properties of poorly water-soluble drug compounds. However, the successful discovery of new pharmaceutical cocrystals remains a time- and resource-consuming process. This study proposes the use of a combined computational-experimental high-throughput approach as a tool to accelerate and improve the efficiency of cocrystal screening exemplified by posaconazole. First, we employed the COSMOquick software to preselect and rank cocrystal candidates (coformers). Second, high-throughput crystallization experiments (HTCS) were conducted on the selected coformers. The HTCS results were successfully reproduced by liquid-assisted grinding and reaction crystallization, ultimately leading to the synthesis of thirteen new posaconazole cocrystals (7 anhydrous, 5 hydrates, and 1 solvate). The posaconazole cocrystals were characterized by PXRD, H NMR, Fourier transform-Raman, thermogravimetry-Fourier transform infrared spectroscopy, and differential scanning calorimetry. In addition, the prediction performance of COSMOquick was compared to that of two alternative knowledge-based methods: molecular complementarity (MC) and hydrogen bond propensity (HBP). Although HBP does not perform better than random guessing for this case study, both MC and COSMOquick show good discriminatory ability, suggesting their use as a potential virtual tool to improve cocrystal screening.

摘要

多组分晶体形式(如共晶体)的开发是一种提高难溶性药物化合物溶解和吸收特性的手段。然而,新型药物共晶体的成功发现仍然是一个耗时且耗费资源的过程。本研究提出使用计算 - 实验相结合的高通量方法作为一种工具,以加速并提高以泊沙康唑为例的共晶体筛选效率。首先,我们使用COSMOquick软件对共晶体候选物(共形成物)进行预选和排序。其次,对所选的共形成物进行高通量结晶实验(HTCS)。通过液体辅助研磨和反应结晶成功再现了HTCS结果,最终合成了13种新的泊沙康唑共晶体(7种无水物、5种水合物和1种溶剂化物)。通过粉末X射线衍射(PXRD)、核磁共振氢谱(¹H NMR)、傅里叶变换拉曼光谱、热重 - 傅里叶变换红外光谱和差示扫描量热法对泊沙康唑共晶体进行了表征。此外,将COSMOquick的预测性能与另外两种基于知识的方法进行了比较:分子互补性(MC)和氢键倾向性(HBP)。尽管在本案例研究中HBP的表现并不优于随机猜测,但MC和COSMOquick都显示出良好的区分能力,表明它们可作为潜在的虚拟工具用于改进共晶体筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd49/9896487/65759a77ae5e/cg2c01072_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验