Suppr超能文献

使用问卷调查、处方续开和结构化电子健康记录来研究口服抗癌药物的持续使用情况。

Examining Oral Anti-Cancer Medication Continuation Using Questionnaires, Prescription Refills, and Structured Electronic Health Records.

作者信息

Ni Congning, Song Qingyuan, Warner Jeremy L, Chen Qingxia, Song Lijun, Rosenbloom S Trent, Malin Bradley A, Yin Zhijun

机构信息

Vanderbilt University, Nashville, TN, USA.

Brown University, Providence, RI, USA.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:865-874. eCollection 2024.

Abstract

Medication persistence is essential for the efficacy of treatment and patient health outcomes. This study investigates the discontinuation of oral anticancer medications (capecitabine, ibrutinib, or sunitinib) in a cohort that is well-characterized by medication discontinuation survey questionnaires, prescription refill data, and structured electronic health records (EHRs). We categorized discontinuation reasons based on a survey of patients taking medication, revealing that 38% of 257 patients completed therapy, while discontinuation was due primarily to no response to therapy and/or progression of disease leading to discontinuation (33%) and side effects/complication (9%). Survival analysis showed variable medication persistence, with capecitabine persistence decreasing significantly over time, to 0.08 in two years. A logistic regression model demonstrated strong capability (with an AUC of 0.835) to identify patients at risk for medication discontinuation. Our study shows the complexities of medication persistence and emphasizes the importance of understanding medication discontinuation patterns and leveraging predictive analytics to inform future research and clinical monitoring in the treatment of cancer.

摘要

药物持续使用对于治疗效果和患者健康结局至关重要。本研究通过药物停用调查问卷、处方 refill 数据和结构化电子健康记录(EHR)对一个队列进行了充分特征描述,调查了口服抗癌药物(卡培他滨、伊布替尼或舒尼替尼)的停用情况。我们根据对正在服药患者的调查对停药原因进行了分类,结果显示,257 名患者中有 38%完成了治疗,而停药主要是由于对治疗无反应和/或疾病进展导致停药(33%)以及副作用/并发症(9%)。生存分析显示药物持续使用情况各不相同,卡培他滨的持续使用随时间显著下降,两年时降至 0.08。逻辑回归模型显示出强大的能力(AUC 为 0.835)来识别有药物停用风险的患者。我们的研究显示了药物持续使用的复杂性,并强调了了解药物停用模式以及利用预测分析为未来癌症治疗研究和临床监测提供信息的重要性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验